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Everyday tasks such as catching a ball appear effortless, but in fact require complex in-

teractions and tight temporal coordination between the brain’s visual and motor systems.

What makes such interceptive actions particularly impressive is the capacity of the brain

to account for temporal delays in the central nervous systemda limitation that can be

mitigated by making predictions about the environment as well as one’s own actions. Here,

we wanted to assess how well human participants can plan an upcoming movement based

on a dynamic, predictable stimulus that is not the target of action. A central stationary or

rotating stimulus determined the probability that each of two potential targets would be

the eventual target of a rapid reach-to-touch movement. We examined the extent to which

reach movement trajectories convey internal predictions about the future state of dynamic

probabilistic information conveyed by the rotating stimulus. We show that movement

trajectories reflect the target probabilities determined at movement onset, suggesting that

humans rapidly and accurately integrate visuospatial predictions and estimates of their

own reaction times to effectively guide action.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Humans exist in a dynamic world. Everyday tasks such as

walking onto a moving escalator or catching a ball appear

simple, but require tight temporally-coupled communication

between visual and motor areas of the brain to ensure the

action is successful. A key aspect of both of these tasks is that

they require interceptionddemanding that the person get

their body to the right place at the right time. To have this kind

of successful interaction with the environment, predictions

about the future state of moving objects must be computed by

the brain and transformed into action. Catching a ball, for

example, requires that the visual representation of the ball

and its likely trajectory be transformed into the appropriate

arm and hand movements, ultimately producing an antici-

patory interceptive movement based on predictive internal

models of object acceleration and gravity (Brenner et al., 2014;

Zago et al., 2004, 2008).

What makes such interceptive actions particularly

impressive is the capacity of the brain to account for the

various temporal limitations of the central nervous system.

Visuomotor processes, involving sensory evidence integra-

tion, action planning, and movement initiation, are subject to

neurophysiological transmission delays ranging from 100 to

450 msec (Resulaj et al., 2009; van den Berg et al., 2016; Zago

et al., 2009). Given the natural aptitude to intercept moving

objects (Brenner et al., 2014; Brenner & Smeets, 2010, 2013;

Fooken et al., 2016; Gellman & Carl, 1991) even when their

motion cannot be fully observed (Fooken et al., 2016; Mazyn

et al., 2007; Sharp & Whiting, 1975), theories articulate that

humansmust pre-plan (Tyldesley&Whiting, 1975; Zago et al.,

2009), adjust on the fly (Dessing et al., 2002), or mix planning

and adjustment (Katsumata & Russell, 2012) to overcome

these delays and produce successful interception actions.

Empirically, there is evidence that the brain predicts the de-

lays of sensory inputs in visual illusions. For example, in the

flash-lag effect (Nijhawan, 2002), a predictably moving object

is perceived as occupying its future location. Likewise, there is

evidence that the brain predicts the delays of motor outputs

during decision making. For example, during a random dot

motion task, neuronal activity thought to reflect the decision

variable terminates ~50 msec before movement initiation

(Roitman & Shadlen, 2002).

Studies of interception tasks have shown that humans are

adept at predicting the future location of an object based on

the movement of that object [e.g., by continuing smooth pur-

suit of an object through a period of occlusion (Fooken et al.,

2016), fixating on the object intended for interception

(Brenner & Smeets, 2010, 2013), or hitting a ball with a bat

(Brenner et al., 2014]. Yet, anecdotally, we also know that

humans can make predictions about where to move based on

other objects in the environment (e.g., obstacles; Chapman &

Goodale, 2008, 2010), and plan actions toward locations where

the eyes are not fixated (e.g., anti-pointing tasks; Johnson et al.,

2002; Knights et al., 2015; Verneau et al., 2016). An intuitive

example is a hockey forwardwho shoots opposite the position

of the goalie to score a goal. Here, the already complex

sensory-to-motor transformation must introduce yet another

mediating cognitive variabledthe representation of where the
goalie will not be based on where the goalie will be. Here, we

wanted to assess this particular capacitydhow well can par-

ticipants plan an upcoming movement based on a dynamic,

predictable stimulus that is not the target of action.

One tool for assessing dynamic cognitive states is to

analyze the shape of movement trajectories (Chapman et al.,

2010a; Freeman et al., 2011; Gallivan et al., 2019; Resulaj

et al., 2009; Scherbaum et al., 2010; Song & Nakayama, 2009;

Spivey et al., 2005; Trommersh€auser et al., 2008; Welsh &

Elliott, 2004; Wispinski et al., 2018). Hand or computer

mouse trajectories can reflect the deliberation of external in-

formation, such as random dot motion stimuli (Resulaj et al.,

2009; van den Berg et al., 2016), number magnitude

(Chapman et al., 2014; Faulkenberry et al., 2016), or word

processing (Spivey et al., 2005). Fluctuations in movements

toward a final choice can also reflect internal information,

such as the subjective value of snack foods (Sullivan et al.,

2015). Typically, movement trajectories that curve between

potential targets suggest conflict or indecision, while trajec-

tories relatively straight toward a target reflect less competi-

tion between alternatives (Cisek & Kalaska, 2010; Song &

Nakayama, 2009; Wispinski et al., 2018).

Of particular note, movements can reflect static or chang-

ing probabilities of multiple potential targets in space. When

required to reach toward one of many potential targets on a

screen, movement trajectories are sensitive to target number,

suggesting a rapid integration of static probabilistic informa-

tion during movement planning (Chapman et al., 2010a;

Gallivan et al., 2011; Hudson et al., 2007). This information can

biasmovement trajectories evenwhenmovements need to be

initiated less than 325 msec after stimuli onset (Gallivan et al.,

2011). Others have shown that movement trajectory planning

can also incorporate changing probabilistic information over

time (Resulaj et al., 2009). In one group of studies, subjects

were asked to reach toward a left or right target to indicate

whether a group of dots on a screen aremoving left or right. In

this task, dot motion is noisy, so motion information fluctu-

ates from timepoint-to-timepoint. In these studies, initial

movement trajectories reflect fluctuating dot motion infor-

mation that occurred roughly 350 msec in the past (Resulaj

et al., 2009; van den Berg et al., 2016).

Here we questioned the extent to which movement tra-

jectories also convey internal predictions about the future

state of dynamic probabilistic information. To examine this,

we manipulated probabilistic information dynamically be-

tween two potential targets. Participants were presented with

a stimulus that rotated in a circle and were required to launch

a movement towards the potential targets prior to the final

target being cued (i.e., go-before-you-know task). Critically,

the position of the stimulus at movement onset determined

how likely each of the two potential targets would be selected

as the ultimate target of action on that trial. Previouswork has

shown that central (endogenous) versus peripheral (exoge-

nous) cue-stimuli elicit different patterns of prediction and

evolve over different time courses (Berger et al., 2005). To

examine if this affected the dynamic prediction task, we

collected data from two groups of participantsdone where

the rotation stimulus was an arrow that rotated about the

central fixation and one where the rotation stimulus was a

box that moved on a more peripheral path adjacent to the
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potential targets. We show that, across both groups, move-

ment trajectories reflect target probabilistic information

determined at movement onset, suggesting that humans

rapidly and accurately integrate visuospatial predictions and

estimates of their own reaction times to effectively guide

action.
2. Materials and methods

2.1. Overview of procedure

Humans use predictions to overcome sensorimotor delays

such that successful actions are generated to intercept mov-

ing objects. Here we use an analysis of behavior (accuracy and

movement trajectories) in a rapid reach task to test whether

these same predictive capacities extend to movement plan-

ning based on predictable, but dynamic sensory evidence. The

stimulus in the current experiments is separate from the

target and conveys information about the probability of the

final target location, rather than cueing location directly. In

this task, we extend a previous go-before-you know paradigm

(Chapman et al., 2010a, 2010b; Gallivan et al., 2017; Milne et al.,

2013; Wood et al., 2011), which requires participants to initiate

a movement in response to a go-signal before one of two po-

tential target locations is revealed as the final target. Here, the

probability of the upcoming target location was conveyed to

participants via a stimulus that rotated at a fixed rate, either

clockwise (CW), counter-clockwise (CCW), or, on baseline/

control conditions, remained stationary (Fig. 1; see videos

linked in Open practices). To test for possible differences in

endogenous versus exogenous cueing (Berger et al., 2005), the
Fig. 1 e Stimuli and trial sequence. Also see videos linked in O

counterclockwise (CCW) around the fixation. Once the stimulus

top of the circle), the fixation disappears and a ‘beep’ plays. The

finger off the start button, after which the stimulus disappears

rapid reach before knowing which of the two targets will be cue

box or an arrow for different sets of participants. (c) Targets we

eight equally-spaced points along the circle was pre-determined

here as red circles). (d) As the stimulus moves (top panel, show

(closer to left, black, left target; or closer to right, grey, right targ
stimuli conveying probability used in the present study

differed across two groups: one group saw a central red arrow,

and the other group saw a more peripheral red box, both of

which rotated around the central fixation cross (Fig. 1b). The

position of the probability-stimulus at movement onset

dictated the probability with which one of two targets was

selected as the final target for action (Fig. 1d). Thus, to have the

highest chance for success participants needed to be moni-

toring and predicting from the rotating probability stimulus

before the go-signal and during reaction time.

Since the stimulus conveying target probability moves in a

circle, the probability of any one target being selected varies

sinusoidally (Fig. 1d).We capitalized on this sinusoidal feature

of target probability to test for sinusoidal characteristics of

behaviour in our key dependent measuresdchoice accuracy

and reach curvature (indexed by reach area; Fig. 2). The trials

in which the probability stimulus remained stationary serve

as the starting point for our analysis (black curves in Fig. 3). In

these stationary trials, we predict and find that participants

are most accurate and reach trajectories are most straight

(low area, e.g., grey trajectory in Fig. 2b) when the probability-

stimulus perfectly predicts the target location (i.e., 100%

probability), and least accurate and least straight (high area,

e.g., green trajectory in Fig. 2b) when the probability stimulus

is ambiguous with respect to final target location (i.e., 50%

probability). To test for participants’ ability to use the rotating

probability-stimulus to guide action planning we compare the

rotating trials (CW in blue, CCW in red; Fig. 3) to these sta-

tionary trials.

Our results test between three patterns of hypothesized

behaviour (Fig. 3). First, as a baseline, we showwhat wewould

expect to see if participants were not predicting the future
pen practices. (a) Example trial where a stimulus rotates

hits a predetermined point along the circle (e.g., at the very

stimulus continues rotating until the participant lifts their

and the final target is cued. Participants must begin their

d. (b) The stimulus that determined target probability was a

re arranged vertically or horizontally on each trial. One of

for each trial at which the go-signal would occur (depicted

n clockwise), the probability of target location oscillates

et).
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Fig. 2 e (a) Example of the three-dimensional reach

trajectories collected. (b) Examples of two reach trajectories

on trials where the right target is cued. The area between

the reach trajectory, and a straight line from the start

position to this participant’s mean endpoint for right target

trials, is used to index reach curvature. When reach

trajectories travel between the two targets the reach area is

larger (green), and when trajectories travel straight to one

target the area is smaller (grey).
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location of the rotating stimulus, but rather, “living in the

past” (Delayed, Fig. 3a). Here, the CW and CCW data would

show a shifted sinusoid whose phase (polar plots; Fig. 3) is out
Fig. 3 e Predictions from left to right. Sinusoids for stationary (

show predictions for reach area (top) and accuracy (bottom). Circ

colored lines showing the predicted phase offsets relative to an e

processing, or insufficient prediction. Accuracy and reach area r

reflects target probability in the past, but information is used d

reflects the final target probabilities. (c) Complete. Prediction is a

to be used at the time of movement onset, when target probabili

Reach area and accuracy both reflect the final target probability
of alignment (specifically, delayed in time) for both accuracy

and reach area. In this case, accuracy and reach area would

reflect a temporally-outdated location of the probability-

stimulus. Under this prediction, behavioural measures could

reflect target probability determined at a salient event like the

go-signal, or at a constant delay reflecting computation and

transmission delays. This result would be consistent with

data from unpredictable stimuli like in a random dot motion

task, where movement trajectories and accuracy reflect the

status of a decision variable several hundred milliseconds in

the past (Resulaj et al., 2009).

Second, if we imagine that participants are living in the

past at the onset of movement but use the time available

during the executed movement to make online corrections

(e.g., changes of mind; Resulaj et al., 2009), we would predict a

“catch-up” pattern of results (Fig. 3b). Here, the phase of the

sinusoid for the reach area of CW and CCW trials lags the

phase of the reach area across static trials, but the phase of the

sinusoid for accuracy “catches up” such that all across-trial

phases align. In this case, participants initially aim toward

an outdated probabilistic location, but successfully correct

their movements in flight to reach and touch the final target.

Finally, third, if we imagine that participants are success-

fully predicting the future probability at the moment of

movement onset (and thus, accurately accounting for senso-

rimotor processing delays and being unbiased by other fac-

tors), we would expect to observe a “complete” pattern of

results (Fig. 3c). Here the CW and CCW data would match the

stationary data. That is, even though rotation trials are dy-

namic, the prediction is accurate, rapid, and updated in real-

time such that participants both aim toward an up-to-date

probabilistic location and correctly touch the final target.

While the measures of reach behaviour described above

are the focus of this study, we can also test how the sinusoidal

nature of target probability might induce sinusoidal changes

in reaction time. In tasks requiring action in response to
black), clockwise (blue), and counterclockwise (red) trials

les next to sinusoid panels are polar plots, with condition-

xpected phase (grey dotted lines). (a) Delayed. No predictive

eflect target probability in the past. (b) Catch-up. Reach area

uring the movement to correct the reach so that accuracy

ccurate and fast. Information about target probability is able

ty is actually determined, and is not biased by other factors.

.
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targets of varying uncertainty, participants have been shown

to adjust movement and reaction times to improve visuomo-

tor accuracy in trials with greater uncertainty (Battaglia &

Schrater, 2007). We would therefore predict reaction times to

fluctuate sinusoidally with target probability. Specifically,

when anchored to the go-signal, wewould predict trials where

target uncertainty is high (probability z50%) to result in

longer reaction times, with participants maximizing the

amount of visual evidence accumulated in support of final

target probability. In contrast, we would predict trials where

the target uncertainty is low (probability z100%) to result in

shorter reaction times, potentially allowing participants to

decrease motor errors by increasing movement time.

2.2. Participants

Twenty-seven participants (19 women; Age: M ¼ 22.78,

SD ¼ 4.19) took part in the arrow experiment, while twenty-

eight participants (13 women; Age: M ¼ 22.96, SD ¼ 3.53)

took part in the box experiment. Sample size was determined

based on recommendations from previous research with

similar experimental paradigms (Gallivan & Chapman, 2014).

All participants provided written consent before the experi-

ment, and were compensated with course credit for partici-

pation. Experimental procedures were approved by Western

University’s Research Ethics Board. Only data from right-

handed participants with normal or corrected-to-normal

vision were analyzed.

2.3. Equipment and stimuli

Participants sat in front of a 4000 touchscreen (NECMultiSync©
LCD4020 refresh rate 60 Hz; Fig. 2a), and made rapid reaching

movements to targets on the screen (see videos linked in Open

practices). Two active infrared markers were taped to the

participant’s right index finger, and tracked reaching move-

ments throughout the experiment (Optotrak, 150 Hz). All

stimuli presentation and data collection were controlled with

MATLAB (The Mathworks, Natick, MA) using Psychtoolbox

(Version 3; Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

2.4. Trial sequence and procedure

Participants performed a variant of a go-before-you-know

task (e.g., Chapman et al., 2010a; Gallivan & Chapman, 2014),

requiring them to initiate a rapid reachmovement before they

knewwhich of two potential targets would be cued as the final

target. The current study involved the presentation of a box

(box experiment) or arrow (arrow experiment) stimulus that

could either rotate around a central fixation (clockwise or

counterclockwise) or remain in a fixed position (stationary).

Two potential targets were presented (placed horizontally or

vertically), and after a variable delay, an auditory beep would

signal the participant to begin their reaching movement. At

movement onset, one of the two targets was cued as the final

targetdthe probability of which was determined by the loca-

tion of the probability-stimulus at movement onset (Fig. 1d).

Participants were informed that the final location of the

stimulus dictated target probability prior to commencing the

task, and were given practice trials until they reported feeling
comfortable with the experimental procedure (e.g., timing

constraints).

Trials began with the participant holding down the start

button (Fig. 2a, positioned 5 cm from the front edge of the

table) with their right index finger. The start button was

placed so that participants would need to reach forward 40 cm

and up 25 cm to touch the center of the screen in front of

them.

With the start button held down, a central fixation cross

would appear with two targets on a screen with a white

background (Fig. 1a). The targets on each trial were arranged

either horizontally or vertically, evenly counterbalanced

across all trials (Fig. 1c). Potential targets were black outlines

of circles 2 cm in diameter, and located 9 cm from the fixation

cross at the center of the screen. Participants were instructed

to maintain central fixation at all times during the

experiment.

Next, a stimulus would appear. For participants in the box

experiment, this stimuluswas a red square 2 cmwide (Fig. 1b).

For participants in the arrow experiment, this stimulus was a

red arrow with its base at the fixation, and extending ~2.2 cm

outward. On stationary trials, the stimulus would appear

located at, or pointing toward, one of 8 evenly-spaced loca-

tions 7 cm from the origin (0�, 45�, 90�, 135�, etc.; evenly

counterbalanced across trials, Fig. 1c) and not move

throughout the trial. On non-stationary trials, this stimulus

would appear at, or point toward, one of 120 evenly-spaced

points centered 7 cm from the origin, with the start location

of the stimulus chosen from a random uniform distribution.

During these trials, the stimuluswould rotate either clockwise

or counterclockwise about the fixation along (box experi-

ment), or pointing toward (arrow experiment), an invisible

circle with 7 cm radius at a constant angular velocity of 180�/s.
For both trial types (stationary and non-stationary), the

stimulus remained on the display until participants initiated

their reaching movements in response to a go-signal. The go-

signal consisted of an auditory beep paired with the simulta-

neous disappearance of the central fixation cross. To clarify,

the box or arrow stimulus continued to rotate after the go-

signal until the participant had lifted their finger off the start

button. This meant that the box or arrow stimulus rotated for

roughly 51.30 additional degrees after its location at the go-

signal, depending on the participant’s reaction time on that

trial (285 msec average RT in non-stationary trials across

participants).

On stationary trials, this go-signal always occurred one

second after the onset of the stimulus. On non-stationary

trials, the stimulus would rotate around the origin for a min-

imum of one second, but would continue moving until it had

reached one of the eight predetermined locations on the circle

(0�, 45�, 90�, 135�, etc.; evenly counterbalanced across trials;

Fig. 1c). Once the box or arrow stimulus had reached this

specified location, the participant would be signalled (via fix-

ation disappearance and the coincident beep) to initiate their

movement.

Participants had 350 msec (box experiment) or 325 msec

(arrow experiment) after the go-signal to lift their finger off the

start button. Upon successful button release, the stimulus

disappeared and one of the two circles was filled in. Partici-

pants then had 425 msec to touch the cued final target on the

https://doi.org/10.1016/j.cortex.2021.02.010
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screen (i.e., reach movements were required to be ballistic).

The probability of a target filling in was based on the location

of the stimulus when the start button was released.

For example, a target had a 100% probability of being cued

as the final target if the probability-stimulus was located

directly next to it (box) or pointed directly towards it (arrow) at

reach onset. If the probability-stimulus was halfway between

the targets when the reach was initiated, both targets had a

50% chance of being filled in (Fig. 1d). At the end of each trial,

participants received feedback on their performance. If par-

ticipants lifted their finger earlier than 100 msec after the go-

signal (i.e., the reach movement was anticipatory), a “Too

Early” error message would be presented after trial comple-

tion. If participants exceeded the reaction time limit, or the

425 msec movement time limit, the trial would similarly end

with a “Time Out” or “Too Slow” error message, respectively.

Participant accuracy was denoted by either a “Miss” message

should they have touched the screen outside of a 6 cm � 6 cm

invisible box centered on the correct final target, or a “Good”

message should they successfully complete the trial without

any errors.

Trials were equally counterbalanced for target arrange-

ments (horizontal or vertical), stimulus motion (stationary,

clockwise, or counterclockwise), and stimulus position at the

time of the go-signal (eight equally-spaced positions around

the origin; Fig. 1c). As such, there were 48 unique conditions (2

target arrangements x 8 trigger positions x 3 rotations), each

repeated 12 times for a total of 576 trials. Trial order was fully

randomized for each participant.

2.5. Pre-processing

Trials were deemed as useable for analysis if they were not

“Too Early” or “Time Out” trials, did not contain movement

recording errors, or did not contain “out of bounds” start or

end positions. Additionally, participants were rejected for

analysis if they had 25% or fewer useable trials in 8 or more of

the 48 unique conditions. These rejected participants are not

discussed further. This criterion was enforced so that partic-

ipants had at least three trials in most conditions for analysis.

Three subjects were rejected from the box experiment, while

six subjects were rejected from the arrow experiment. One

subject was also rejected from each experiment for initially

reaching backward off the start position in the majority of

trials, leaving n ¼ 24 and n ¼ 20 for the box and arrow ex-

periments, respectively.

Data cleaning and trial rejection were conducted following

the recommendations in Gallivan and Chapman (2014) for

rapid reaching experiments. In brief, reach trajectories were

space-normalized to 200 equally-spaced points along the

~40 cm distance from the start position to the screen (Gallivan

& Chapman, 2014). Reach area was calculated as the approx-

imate area between a reach trajectory on a correct trial and

the straight line between the start position and average

endpoint for that corresponding target (left, right, up, down)

calculated for each subject (Fig. 2b; for previous use see

Chapman, Gallivan, & Enns, 2015; Chapman, Gallivan, Wong,

et al., 2015). Area was calculated in two-dimensional space

along the axis of interest on that trial (e.g., horizontal axis for

horizontal target trials). Reach areas were then z-scored for
each subject within each target orientation condition (left,

right, up, down). Reach area normalization was performed

because biomechanical differences within and between sub-

jects created differences in reach area for different reach di-

rections that were not of interest in this study. Larger

normalized reach areas correspond to trajectories that move

more in between the two targets, whereas smaller reach areas

correspond to trajectories that more closely follow a straight

line path to the correct, filled-in target. As such, reach area can

be used to estimate the level of competition or indecision

between several potential targets in space (Gallivan &

Chapman, 2014; Gallivan et al., 2018; Wispinski et al., 2018).

Reaction time was calculated as the time from the go-

signal auditory beep to the release of the start button. Move-

ment time was calculated as the elapsed time between button

release and when a touch was detected on the touchscreen.

Unlike “Too Early”, “Time Out”, and “Miss” trials, we did not

automatically reject “Too Slow” trials. Instead, “Too Slow”

trials >2 SD above a participant’s mean (after excluding all

trials with a movement time >850 msec) were rejected for

analysis.

Errors on each trial could be a combination of “Too Early”

(M ¼ 1.02%, Range: 0% - 5.21%), “Miss” (M ¼ 8.08%, Range: .52%

- 20.31%), “TimeOut” (M¼ 12.02%, Range: .35% - 32.12%), >2 SD

of mean movement time (M ¼ 4.06%, Range: 1.22% - 7.64%),

reaches with recording errors (M ¼ 1.21%, Range: 0% - 9.72%),

and reaches with “out of bounds” start or end positions

(M ¼ 6.49%, Range: .17% - 32.29%). In total, participants whose

data was analyzed had a mean of 86.02% useable trials for

analysis (Range: 57.81% - 98.96%), and of those trials amean of

86.06% were correct (Range: 72.59% - 96.97%). These trial

rejection numbers are generally in line with recommenda-

tions for rapid reach experiments (Gallivan& Chapman, 2014).

2.6. Model

To overcome sparsity of sampling (there were 120 possible

stimulus locations) and to directly test for the predicted si-

nusoidal patterns of data (Fig. 3), we reduced the data

collected in this experiment by fitting a sine wave model to

each condition for each subject. The sine wave model con-

sisted of a fixed period equal to the rate of stimulus rotation

(180�/s), and three free parameters: mean shift (m), amplitude

(A), and phase shift (ɸ).

y ¼ m þ A sin(ɸ þ x)

To fit data to this sine wave model, circle positions on

vertical target trials were rotated 90� so that they would line

up with horizontal target trials (i.e., 100% target probability

occurred at the same circle location for horizontal and vertical

trials). Circle positions were then collapsed so that positions

started at 100% target probability of left targets, decreased to

50% target probability, and then ended at 100% probability for

right targets (Fig. 1d). For each subject and for each condition

(e.g., Fig. 4a shows a subject in the box experiment, horizontal

targets, and clockwise stimulus rotation), single trial data

were fit to the sine wave model using a least squares cost

function. One-hundred fits were performed using the fmin-

searchbnd function in MATLAB with random initial

https://doi.org/10.1016/j.cortex.2021.02.010
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Fig. 4 e Fitting sine wave models to reduce data. (a) Example of a single subject, single condition sine-wave fit where each

data point is a single trial. Sine waves with fixed period (matching the probability profile of the rotating stimulus), variable

mean shift, amplitude, and phase shift were fit to single-trial data. Shown is normalized reach area by target validity

locations for a single participant in the box experiment when targets were arranged horizontally and the probability

stimulus was rotating clockwise, R2 ¼ .23. (b) Sine wave parameter fits to normalized reach area where each data point is

one subject’s data for each parameter (m - left panel, A- middle panel, 4 - right panel) in each condition (Stationary - black,

CW - blue, CCW - red) and experiment (Box and Arrows). Dashed line in the phase panel represents the expected phase for

normalized reach area (lowest at 100% target validity, highest at 50% target validity).
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parameters, and the fit with the lowest cost was taken as the

final parameter estimate. The amplitude parameter was

constrained to be higher than zero for all fits, as it caused

inaccurate phase parameter estimates if amplitude was too

low.

By fitting sine waves to each condition for each participant,

these data were reduced to three parameters (mean, ampli-

tude, and phase), which were used for statistical comparisons

(Fig. 4b). Overall, these sine waves are reasonable descriptors

of the data and provided useful data reduction. First, the

model period corresponds directly to the independent vari-

ables of stimulus motion and changes in target probability

with location (i.e., 180�/s). Second, the fitted models describe

the dependent variables in different target probability loca-

tions reasonably well, given that the sine wave model is fit to

single-trial data (reaction time, mean R2 ¼ .09, range: �.26 -

.45; accuracy, mean R2 ¼ .08, range: 0 - .37; reach area, mean

R2 ¼ .13, range: �.01 - .45). Reach area and reaction time were

only calculated for correct trials.

2.7. Statistical analysis

2.7.1. Phase
Our primary theoretical motivation was to test whether pre-

diction of probability would be evident in our dependent

measures. As such, of our model-fitted dependent measures,

the phase parameter is of the most theoretical importance.

However, estimated phase parameters reasonably match a

circular normal distribution, which violates assumptions of

many statistical tests, such as a linear repeated-measures

ANOVA. Therefore, the phase parameters for the sine waves

fit to each of reaction time, reach area, and accuracy were

compared using circular statistics (Berens, 2009). In particular,

wewere interested if estimated phases in each conditionwere

significantly different from an expected phase. For instance,

in the stationary stimulus condition, we would expect reac-

tion times to be the fastest, reach area to be the smallest
(reaches most straight), and accuracy to be highest when

target probability was 100%. We expect the reverse pattern

when the probability was 50% (slow reaction times, large

reach areas, and low accuracy). Below we compare whether

the observed phase estimates in each condition were signifi-

cantly different from the expected phase using one-sample

circular t-tests. In addition, we wanted to know how each of

our stimulus conditions differed fromone another. So, we also

ran all possible circular paired t-tests of stationary versus

clockwise versus counterclockwise stimulus conditions. This

led to 18 total circular t-tests [3 dependent measures x (3 one-

sample þ 3 paired)], which were Bonferroni-corrected to a

statistical threshold of .0028 (i.e., .05/18). Our investigation of

phase collapses across the other factors in our experiment

(Experiment: Box or Arrow, and Target Arrangement: Vertical

or Horizontal) because our main theoretical questions are

driven by Rotation.

2.7.2. Mean and amplitude
For mean and amplitude parameters estimated from each

dependent variable (reaction time, reach area, accuracy), we

conducted a 2 (target arrangement: horizontal vs vertical) x 3

(rotation: stationary vs clockwise vs counterclockwise) x 2

(experiment: box vs arrow) mixed ANOVA. All main effects

and interactions were Greenhouse-Geisser corrected, and also

corrected using the sequential Bonferroni-Holm procedure

(remedy 2; described in Cramer et al., 2016) to control for the

familywise error rate of all the mixed ANOVA tests together.
3. Results

Accuracy and reach area were analyzed relative to the final

target probabilities on each trial (i.e., when the probability-

stimulus disappeared at the beginning of a movement).

However, reaction time was analyzed relative to the target

probabilities at the go beep. Locking reaction times to the go

https://doi.org/10.1016/j.cortex.2021.02.010
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beep can give us a picture of how target probabilities influence

movement onset times.

3.1. Effects of rotation on phase

As articulated in our Methods, our primary motivation was to

analyze the effect of rotation condition on the estimated

phase parameters of the data. These analyses speak to

whether the sinusoidal pattern of the dependent measures

are shifted depending onwhether the stimuluswas stationary

or rotating, and should indicate whether reach behaviour re-

flects a delayed, catch-up, or complete sensorimotor predic-

tion process based on dynamic target probability (Fig. 3). For

the following tests, the corrected statistical threshold was

p ¼ .0028 (see 2.7.1. Phase).

For reaction time data (Fig. 5), we find that the distribution

of estimated phases when the stimulus is stationary is not

different from the expected phase [phase difference ¼ 2.65�,
p ¼ .70, 99% CI [21.06�, �15.76�]]. Here we test against an ex-

pected phase where fastest reaction times occur when prob-

ability is 100% and slowest reaction times occur when

probability is 50%. However, estimated phases in conditions

where the targets are moving clockwise [phase

difference ¼ 51.16�, p ¼ .000013, 99% CI [75.29�, 23.94�]] or

counterclockwise [phase difference ¼ �63.94�, p < .000001,

99% CI [-32.39�, �97.33�]] are significantly different from the

expected phase. Pairwise comparisons indicate that both the

stationary (p ¼ .0014) and clockwise (p ¼ .00011) phases are

significantly different from the counterclockwise phase.

However, stationary and clockwise phases are not signifi-

cantly different from each other at the corrected statistical

threshold (Fig. 5; p ¼ .0051). This pattern of results suggests
Fig. 5 e Sine wave models fit to reaction time data over

target validity positions, time-locked to the go beep. Sine

waves from each individual condition (e.g., a subject in the

box experiment, horizontal targets, clockwise rotation) are

in light grey and a sine wave with average mean,

amplitude, and phase parameters are in solid colors (black

for stationary, blue for clockwise, red for

counterclockwise). On the right is a circle showing a polar

plot describing the phase parameters and their confidence

intervals (Bonferroni-corrected 95%). The sinusoidal

pattern of results corresponding to the expected phase are

plotted dashed grey lines. Average stationary phase was

not significantly different from the expected phase, while

phases in the rotating conditions were significantly

different from the expected phase.
that when the probability-stimulus is rotating, participants

are reacting to the probability state that the stimulus is

approaching, rather than reacting to where the probability-

stimulus is actually located at the time of the go-signal.

For reach area data (Fig. 6), the expected phase is that reach

area would be smallest when probability was high, and largest

when probability was low. All estimated reach area phases do

not differ from the expected phase regardless of if the stimulus

was stationary [phase difference¼ 2.39�, p¼ .58, 99%CI [-11.06�,
16.79�]], moving clockwise [phase difference ¼ �5.61�, p ¼ .30,

99% CI [-20.04�, 8.82�]], or moving counterclockwise [phase

difference ¼ �5.11�, p ¼ .34, 99% CI [-22.36�, 10.50�]]. For accu-
racy data (Fig. 6), the expected phase is that accuracy would be

highest when probability was high, and lowest when proba-

bility was low. All estimated accuracy phases do not differ from

the expected phase regardless of if the stimulus was stationary

[phase difference ¼ �8.85�, p ¼ .14, 99% CI [-22.71�, 6.31�]],
moving clockwise [phase difference ¼ 3.91�, p ¼ .54, 99% CI

[-13.15�, 20.96�]], or moving counterclockwise [phase

difference ¼ �.15�, p ¼ .99, 99% CI [-22.34�, 22.64�]]. Pairwise

comparisons indicate that stationary, clockwise, and counter-

clockwise phases are not significantly different fromeach other

(ps [.11, .96]) for both reach area and accuracy data (Fig. 6). This

pattern of results shows that people were accounting for

sensorimotor delays and building those sensorimotor delays

into their reach planning. This aligns with our Complete pre-

diction hypothesis (Fig. 3) and demonstrates that, in this task,

predictive mechanisms were being successfully deployed

based on a probability-stimulus that was separate from the

actual target location.

3.2. Additional main effects

Beyond the theoretically-motivated exploration of Phase

parameters, we also examined differences in Mean and

Amplitude for our sinusoidal parameter fits using a 3-factor

mixed ANOVA applied to each of reaction time, reach area,

and accuracy. After correcting for the number of statistical

tests (Cramer et al., 2016), we found no significant effects of

Experiment, nor any significant interactions in these data (ps

[.018, .97]). Five main effects passed the adjusted significance

threshold and are described below. Again, for the following

tests, the corrected statistical threshold varied per test be-

tween p ¼ .00119 and p ¼ .05 (Cramer et al., 2016).

Analyses showed a main effect of rotation for the mean

parameters estimated from reaction time data, F(1.21,

47.11) ¼ 54.86, p ¼ 5.8e-9, hp
2 ¼ .52. Bonferroni-corrected post-

hoc comparisons showedmean parameters were lower in the

stationary condition relative to the clockwise [t(42) ¼ 8.38,

p ¼ 3.14e-12] or counterclockwise [t(42) ¼ 8.21, p ¼ 7.05e-12]

conditions, and that the clockwise and counterclockwise

conditions did not differ [t(42) ¼ .17, p ¼ 1.00]. In other words,

participants were faster to start moving when the stimulus

was stationary relative to when it was moving.

Analyses also showed a main effect of rotation for the

amplitude parameters estimated from normalized reach

area data, F(1.61, 67.45) ¼ 9.98, p ¼ 4.39e-4, hp
2 ¼ .19.

Bonferroni-corrected post-hoc comparisons showed ampli-

tude parameters were higher in the stationary condition

relative to the clockwise [t(42) ¼ 4.12, p ¼ .00026] or

https://doi.org/10.1016/j.cortex.2021.02.010
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Fig. 6 e Sine wave models fit to reach area (top) and

accuracy (bottom) data over target validity positions. As in

Fig. 5, sine waves from each individual condition are in

light grey, while a sine wave with average mean,

amplitude, and phase parameters are in solid colors (black

for stationary, blue for clockwise, red for

counterclockwise). The average phase in each rotation

condition and Bonferroni-corrected 95% confidence

intervals are plotted along a circle, with the expected phase

as a dashed line.
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counterclockwise conditions [t(42) ¼ 3.55, p ¼ .0019], and

that the clockwise and counterclockwise conditions did not

differ [t(42) ¼ .57, p ¼ 1.00]. In other words, the difference

between straight, confident reaches and indirect, conflicted

reaches was larger for the stationary trials than the moving

trials. This likely reflects that stationary trials’ probabilities

were more discernible than rotating trials. Analyses

revealed a main effect of target arrangement on the mean

parameters estimated from accuracy data, F(1, 42) ¼ 86.93,

p ¼ 8.69e-12, hp
2 ¼ .67. Post-hoc comparisons showed mean

parameters were higher for horizontal targets relative to

vertical targets [t(42) ¼ 9.44, p ¼ 4.83e-12], suggesting par-

ticipants found horizontal trials easier than vertical trials.

Finally, analyses revealed a main effect of target arrange-

ment for the amplitude parameters estimated from normal-

ized reach area, F(1, 42) ¼ 18.94, p ¼ 8.46e-5, hp
2 ¼ .31, and

accuracy data, F(1, 42) ¼ 12.39, p ¼ .001, hp
2 ¼ .23. Post-hoc

comparisons showed amplitude parameters were higher for

horizontal targets relative to vertical targets for reach area

data [t(42) ¼ 4.35, p ¼ .000085]. These results indicate that the

change from straight to indirect reaches was larger for hori-

zontal trials, likely because the hand started between the two

targets for horizontal trials, but below the two targets for

vertical trials. Conversely, amplitude parameters were higher

for vertical targets relative to horizontal targets for accuracy

data [t(42)¼ 3.52, p¼ .0011]. In other words, participants found

horizontal trials easier than vertical trials. Essentially, accu-

racy was near 100% when probability was high for both hori-

zontal and vertical trials, but vertical trials’ accuracy was
much lower when probabilities neared 50%. This means that

vertical trials have a larger amplitude to account for the

decrease at 50% probability and subsequently have a lower

mean.
4. Discussion

Herewe assessed howwell participants can plan an upcoming

movement based on a dynamic, predictable stimulus that is

not the target of action. A stationary or rotating stimulus

determined the probability that each of two potential targets

would be the ultimate target of a rapid reach-to-touch

movement. Further, we used two different stimuli (box and

arrow) to investigate processing differences in exogenous and

endogenous attention systems. We questioned the extent to

which the sensorimotor system integrates predictions about

the future state of dynamic probabilistic information by

examining movement trajectories.

We testedwhether the sinusoidal pattern of reach area and

accuracy was shifted in time relative to the rotation of the

stimulus that determined target probability. We tested be-

tween three possible patterns of results (Fig. 3). According to

the “delayed” prediction, transmission delays in the central

nervous system would mean that reach area and accuracy

would reflect the target probability at some time in the past.

According to the “catch-up” prediction, information about

target probability would be similarly delayed, but could still be

used to correct online reach trajectories toward the final target

more often. This catch-up prediction would appear as a

delayed offset in the sinusoidal pattern of reach area relative

to the probability-stimulus, but with less temporal offset for

the sinusoidal pattern of accuracy. Finally, according to a

“complete” prediction, participants would be able to success-

fully predict the future location of the probability-stimulus

while accounting for their own reaction time, ultimately

producing a sinusoidal pattern for both reach area and accu-

racy in lock-step with information about the final target

probabilities. These results support the notion of “complete”

prediction (Fig. 3), wherein there is no temporal offset for

patterns of reach area and accuracy between stationary,

clockwise, and counterclockwise conditions. Overall, we show

that, despite sensory and motor delays in the central nervous

system, movement trajectories reflect target probability

determined at movement onset. This was true for both the

box and arrow experiment, suggesting that the prediction of

probability from a non-target stimulus is not subject to

changes due to a central versus more peripheral focus. This

suggests that humans rapidly and accurately integrate vi-

suospatial predictions from various non-target stimuli and

can estimate their own reaction times to effectively guide

action.

It has long been argued that one of the major roles of the

brain is to producemovement (Cisek& Kalaska, 2010; Gallivan

et al., 2018; Hommel et al., 2019; Wolpert et al., 2001) and that

this capacity, among others, involves prediction (e.g., Clark,

2013; Helmholtz, 1962). In short, several theories posit that

the brain, rather than using the accumulation of bottom-up

sensory cues to build a model of the world, instead builds

predictions about the current state of the world and compares
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https://doi.org/10.1016/j.cortex.2021.02.010


Fig. 7 e Average correct reach trajectories for each

participant when reaches ended left (dark grey) and right

(light grey) on trials where targets were arranged

horizontally. Reaches are plotted in one of the eight trigger

positions along the circle corresponding to the probability-

stimulus location when the go-signal was presented.

These data are intended to be qualitative descriptors of the

overall reaching patterns by condition. For (a) Stationary

trials, reaches tended to be straightest when the
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these predictions to incoming sensory information. The dif-

ference between the predicted sensory input and the actual

sensory inputdtermed the “prediction error”dis used to

continually update internal models of the world (Clark, 2013).

Evidence for such predictive coding has been found for low-

level sensory input (Hosoya et al., 2005; Rao & Ballard, 1999),

as well as higher order cognitive functions (Spratling, 2008,

2016).

In addition to perception and cognition, the fundamental

capacity for prediction is required for effective motor control,

where appropriate motor commands are computed through

the use of internal forward models (Wolpert et al., 2001).

Forwardmodels are a theoretical construct that can be used to

predict, given a particular motor command, the sensory con-

sequences of executing the action. Such prediction allows the

brain to account for transmission and computational delays in

the central and peripheral nervous systems, effectively

providing for robustness in both real-time control and

perception. There is good behavioural and neural evidence

that the brain contains such internalmodels (Blakemore et al.,

1998; Schneider & Mooney, 2018; Wolpert et al., 1995). For

example, with respect to perception, humans are unable to

tickle themselves because forward models can be used to

inhibit sensations arising from self-motion (Blakemore et al.,

1999). Likewise, with respect to control, the prediction of the

sensory consequences of action can allow the brain to rapidly

detect performance errors, and rapidly launch effective

corrective actions as needed. A forward model is useful

especiallywhen generating interceptive actions. Howhumans

use an internal prediction model for interceptive actions was

tested by Soechting et al. (2009) using a model that explained

finger movements during interception of a randomly moving

target on a screen. They found that the finger’s positionwithin

100 msec of movement onset reflected anticipatory pre-

dictions in advance of the target’s location, similar to the

current reach area results. However, Soechting et al. (2009)

conclude that only “directly observable quantities” like

target position and velocity are integrated into an internal

predictionmodel, while higher order properties like statistical

features of motion (i.e., sinusoidal motion laws) are not

dynamically refined. In contrast, the current results suggest

that some unobservable quantities, in this case target proba-

bility derived from a rotating stimulus, do indeed directly

impact real-time predictions.

In this study, we used movement trajectories to reveal the

sensitivity to changes in target probability. Previous work has

shown that trajectories are thought to be a real-time readout

of several cognitive variables, shown in behaviours such as

changes of mind (Resulaj et al., 2009; van den Berg et al., 2016),

or moment-to-moment fluctuations throughout movement

(Dshemuchadse et al., 2013; Freeman et al., 2011). Here, we

show that curved reach trajectories (i.e., those with large
probability-stimulus is at the left or rightmost trigger

position at the go-signal, and more curved when at the top

and bottommost trigger position. For (b) Clockwise and (c)

Counterclockwise trials, this pattern is shifted indicating

that participants were anticipating the future location of

the probability-stimulus.
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reach areas) reflect uncertainty about the predicted target

position, while relatively straighter reach trajectories (i.e.,

those with smaller reach areas) reflect more certainty about

target predictions. We provide Fig. 7 as a useful descriptive

tool demonstrating the effect of the position of our dynamic

probability stimulus at the time of the go-signal on average

participant trajectories. For stationary stimuli, reach trajec-

tories are most curved when the stimulus is positioned half-

way between the two targets (50% target probability, Fig. 7a,

middle panels of top and bottom rows), whereas for rotating

stimuli reach trajectories are most curved when the stimulus

is moving toward 50% probability at the go-cue (top left and

bottom right corners for Fig. 7b, CW; top right and bottom left

corners for Fig. 7c, CCW). Overall, this suggests that partici-

pants are successfully predicting the future probability of both

potential targets, and planning their movements accordingly.

Behavioural measures such as reaction time, accuracy, and

movement trajectories are often thought to index the same

internal cognitive processes (Wispinski et al., 2018). However,

these behaviors are measured at different times. For instance,

reaction time may reveal cognitive variables several hundred

milliseconds before accuracy, particularly when a reaching

movement separates the two. Differences between these

measures may reveal the evolution of cognition over the

course of a trial, especially in dynamic environments.

Here we see a dissociation between reaction time and

measures of reach area and accuracy. The pattern of reac-

tion time on clockwise and counterclockwise trials is out of

phase with the pattern of reaction time on stationary tri-

alsdresults not observed for reach area and accuracy. On

one hand, this difference could reflect that reaction time is

indexed at an earlier point in the trial than accuracy and

most of the movement trajectory. This might suggest that

the internal prediction of target probability is still evolving

when reaction time is measured, while predictions of target

probability are accurate at the time movement and accuracy

are measured. Some models explicitly theorize that reaction

time, movement trajectories, and accuracy can be explained

in some tasks from the same internal decision variable

(Resulaj et al., 2009). However, these measures, while

similar in some tasks, may arise from distinct computation.

Such differences may also explain the discrepancy between

reaction time, reach area, and accuracy in the current re-

sults. Finally, it is also possible participants are adjusting

reaction times to improve visuomotor accuracy in trials

with greater uncertainty (Battaglia & Schrater, 2007). When

trials are uncertain, longer reaction times may be used to

accumulate more sensory evidence to guide their decision.

Overall, however, these results suggest more work needs to

be done to determine if reaction time and movement vari-

ables in a reach decision task reflect common or separate

cognitive processes.

In the present study, we demonstrated that humans are

able to accurately predict future states from a predictable,

dynamic, non-target object and account for sensorimotor

delays to guide rapid reaching movements. Such predictions

are likely a key part of neural computation within and be-

tween different systems of the brain. The results of this study

speak to one key part of how humans are able to carry out

actions in complex and dynamic environments.
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