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Abstract6

As decisions require the gathering of relevant information, eye-tracking measures that capture the way7

visual information is typically acquired offer powerful indices of the dynamic decision-making process.8

This study is the second of a pair of studies that explore continuous measures of decision-making using9

remote, online tools in naturalistic settings. While cursor-tracking, used in the companion paper (Ouel-10

lette Zuk et al., 2023), enabled access to dynamic decision processes expressed during movement, in the11

present study, we now employ webcam eye-tracking to examine the dynamics of information gathering12

during decision making prior to movement initiation. Using three previously published binary choice13

tasks, we explored indices of decision difficulty in the gaze dynamics that would complement the motor14

measures in our companion paper. We find that harder choices elicit more eye dwells and longer final15

dwells, reflecting a decision resolution process that Ouellette Zuk et al. index during the final choice16

movement. Beyond this, we identify distinct gaze patterns uniquely employed in each task, revealing the17

utility and sensitivity of gaze metrics in illuminating the early difficulty-independent information gath-18

ering processes at play. Together, this paper series demonstrates the power of remote, online methods19

as tools for deeply understanding the complete, dynamic and continuous decision process, from the first20

glance to the final response.21
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1 Introduction24

In the past, research on decision-making has primarily focused on the outcomes of decisions and has used25

discrete measures such as choice-outcomes, accuracy, or reaction time to understand the underlying cognitive26

processes involved (see [39] for review). However, these approaches really only capture what decision was27

made with little or no information about how a particular decision was arrived at. To address this gap,28

recent research has turned to the motor system as a means to investigate the dynamics of decision-making.29

Actions that move through space have been shown to track decision processes that unfold across time [7, 15,30

11, 48].31

One of the most accessible ways to record movement data is through cursor movements on a screen. For32

example, 2-D computer-mouse movements provide a sensitive, flexible, and scalable method to study decision33

dynamics ([26, 33, 21, 14, 12, 46], and many more). Moreover, the widespread adoption of cursor-based34

technologies (computers, tablets, smartphones) and the recent availability of online experiment generation35

tools (e.g., Labvanced [13], Gorilla [2], lab.js [22], jsPsych [32], PsychoPy [36]) means that now, more than36

ever, we can collect information about decision dynamics from larger, more diverse samples and from people37

in more ecologically-valid contexts (i.e., remote, online data collection). The current study is the second38

half of a two-article set aimed at mapping the possibilities and limitations of using remote data collection39

during cursor-based decision tasks. In the first study (Ouellette Zuk et al., 2023), we focus on testing40

the robustness of remote data collection for understanding dynamic decision-making, showing that nuanced41

details of decision processes are available not only in computer-mouse movements but are also clearly evident42

and sometimes even stronger when the same task is deployed on tablets and smartphones.43
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But, our first study is literally only half the story. While cursor-tracking reveals valuable insights into the44

decision process once movement begins, it cannot track details of the perceptual processes that occur prior to45

a movement toward a particular choice being initiated. While reaction time reliably tracks decision difficulty46

in this early phase (e.g., [38, 35]) it fails to capture any of the constituent dynamics of how the decision process47

is evolving. In these crucial early moments of a decision, a person is gathering the necessary information from48

their environment to inform their choice. For tasks involving visual stimuli in particular, this information49

gathering is primarily mediated by eye movements. Therefore, eye-tracking offers a unique opportunity to50

investigate the decision process at an earlier stage, revealing how individuals extract information and make51

decisions based on where they focus their gaze.52

Given this, it is not surprising that eye-tracking has long been a prominent method in decision-making53

research. Extensive work has shown the interconnectedness of gaze and choice, where gaze patterns can54

both reflect and bias choices [42, 17, 16]. Moreover, eye movements have been shown to actively sample the55

world in a way that adaptively maximizes the informative value of fixations [19, 6]. Analyzing these fixation56

sequences that precede a decision has provided valuable insights, revealing that the location, duration, and57

pattern of fixations serve as indices of the relative competition between choice options [28, 29]. Findings like58

these have challenged classic decision-making theories (e.g., evidence accumulation; [18, 37, 43]) to reconcile59

the important role the eyes play in information sampling. This has led to the development of gaze-aware60

decision models such as the attentional drift diffusion model (aDDM; [28]), Decision Field Theory [5], and61

the gaze cascade model [42]. These models assume an option receives more evidence when gazed at, acting62

like an amplifier for the attended option [27]. Moreover, the aDDM has been extended beyond preferential63

choice contexts, encompassing different stimuli types (e.g., numeric information vs pictorial images; [30])64

and choice domains (e.g., risky and social choices; [44]). Collectively, these theoretical advancements and65

empirical contributions provide a foundation for comprehending how the eyes sample spatially-distributed66

information, emphasizing the value of eye-tracking as a method to better understand how decisions unfold.67

In the context of the current study, they show that eye-tracking is almost a perfect complement to cursor-68

tracking in its ability to fill in the gap of decision dynamics during the earliest stages of a choice being69

made.70

A major drawback shared by all of the aforementioned eye-tracking studies is their confinement to lab-71

oratory settings. Recently, however, the use of webcam eye-tracking has emerged as a promising avenue in72

bridging the gap between controlled laboratory experiments and data collected in a wide range of environ-73

ments (e.g., [49, 47, 4]). Admittedly, webcam eye-tracking is still a method in its infancy and has notable74

limitations in both temporal and spatial accuracy [40, 3, 49]. Despite these challenges, it offers a distinct ad-75

vantage by capturing gaze patterns in ecologically-valid settings such as within the participants’ own homes76

and on their personal devices. Furthermore, it can be argued that - with the overall trend toward increasing77

digital and screen based interactions - computerized decision-making tasks like the one used by Krajbich et78

al. [28], now closely resemble everyday, real-world decisions. Thus, by shifting these tasks to a more natu-79

ralistic context, such as the participants’ homes, a more comprehensive exploration of authentic, real-world80

visual behaviours and decision-making processes becomes possible. Additionally, the remote nature of this81

method allows for scalable data collection beyond the limitations of a laboratory, while also providing access82

to more diverse, global populations [23, 1].83

Therefore, in this study we employ webcam eye-tracking - in part to explore its potential and limits84

as a method - and theoretically to explore the relationship between decision difficulty and gaze behaviour85

patterns. As previously mentioned, the current study is a companion paper to Ouellette Zuk et al. (2023),86

with both studies intentionally sharing the same experimental design. This design aimed to replicate and87

extend three unique and previously published mouse-tracking based decision-making tasks. These tasks88

were deliberately chosen to cover a range of decision domains including objective perceptual judgments (Nu-89

meric Size-Congruity [12]), semi-subjective conceptual judgements (Sentence Verification [10]) and subjective90

preference judgements (Photo Preference [26]). The tasks also varied in terms of stimulus characteristics,91

encompassing numerical digits, written statements, and photos. By employing webcam eye-tracking, we not92

only gain insights into how the decision context varies across tasks but also how differences in the presenta-93

tion and distribution of information across space affect the decision-making process, something that cannot94

be solely obtained through mouse-tracking. Thus, replicating Ouellette Zuk’s design with eye-tracking will95

not only allow us to explore the rich, dynamic decision process earlier in time, beginning before movement96

initiation, but also explore how this process presents across decision contexts and with different distributions97

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543799doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543799
http://creativecommons.org/licenses/by-nc-nd/4.0/


of decision information in the display. In doing so, we also demonstrate the utility of remote data collection98

in general and webcam eye-tracking in specific as a tool for capturing this rich readout of decision-making99

from participants in their own environments using their own devices.100

2 Results101

This study replicates and extends our cursor-tracking-focused companion paper (Ouellette Zuk et al., 2023).102

Both studies employed three binary choice tasks where participants indicated their choice through cursor103

movements: a Sentence Verification task [10], a Numeric-Size Congruity task [12], and a Photo Preference104

task [26]. Each task was designed and analyzed to produce Easy and Hard trials (see Figure 1): For the105

Sentence Verification task, based on previous work [10], participants indicated if a simple statement was106

true or false. On Easy trials, the statements were true and not negated (e.g., ‘Cars have tires’) and on Hard107

trials the statements were true and negated (e.g., ‘Cars do not have wings’). For the Numeric-Size Congruity108

task, based on previous work [12], participants indicated which of two digits had a higher numeric value. On109

Easy trials the size and numeric value were congruent (e.g., 2 vs. 8)), and on Hard trials size and value were110

incongruent (e.g., 2 vs. 8). Finally, for the Photo-Preference task, based on previous work [26], participants111

indicated which of two photos they preferred. On Easy trials, one photo had low pleasantness while the112

other had high pleasantness and on Hard trials both photos had high pleasantness. Our companion paper113

successfully replicated the main finding from the original task publications (i.e., [10, 12, 26]) that responses on114

Hard trials take longer than Easy trials, while also showing how decision difficulty affects cursor movements.115

Here we predict that we will also replicate the finding that Hard trials generate longer response times than116

Easy trials and investigate how decision difficulty affects webcam-tracked gaze behaviour.117

2.1 Response Time: Hard decisions take longer than easy decisions118

We use Response Time as a single, broad measure to capture the duration from the presentation of choice119

options to the point of response (marked by the cursor entering the selected option). It encompasses both120

reaction time and movement time as described in our companion paper (Ouellette Zuk et al., 2023). Repli-121

cating our previous work, and confirming our key prediction, across all three tasks we observed a consistent122

Difficulty effect (see Figure 1). Specifically, Hard trials required significantly more time than Easy trials123

(Sentence Verification: t(96) = 21.0, p < .001; Numeric-Size Congruity: t(89) = 8.01, p < .001; Photo124

Preference: t(96) = 7.95, p < .001).125

2.2 Proportion of Trials: Unique task demands drive unique gaze behaviours126

We began our examination of gaze patterns within each task by characterizing and analyzing the most127

frequently observed dwell patterns (see Figure 1). For our analysis, we defined a dwell as a continuous gaze128

on an area of interest, lasting at least 100 milliseconds within the expanded boundaries of that area (see129

Figure 3). A dwell ended if the gaze shifted outside that area for more than 100 milliseconds. To identify130

the most common gaze patterns we conducted separate RMANOVAs for each task. These analyses aimed131

to assess when and how often the eyes dwelled on particular AOIs. The following RMANOVAs include up132

to four factors to describe the dwell patterns observed: Dwell Count, Difficulty, First Dwell Side, and Last133

Dwell Option. The Dwell Count factor consisted of four levels (1, 2, 3, and 4 or more), indicating the number134

of unique dwells during a trial. The Difficulty factor distinguished between trials classified as either Hard135

or Easy. The First Dwell Side factor described whether the initial dwell on a trial fell upon the Left or the136

Right choice option. Finally, the Last Dwell Option factor indicated whether the final dwell of the trial was137

on the Chosen or Unchosen option.138

2.2.1 Sentence Verification Task139

Sentence Verification was unique in that many times (∼35% of all trials) participants’ eyes dwelled only on140

the sentence and never on either choice option. We represent the proportion of these “No Dwells on Options”141

in Figure 1A, but it is not possible to examine them in our statistical analysis of choice option gaze patterns.142
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Figure 1: Examples of hard and easy decisions, alongside response time (horizontal bar graphs) and the
proportion of trials (vertical bar graphs) results across the study’s three tasks: A) Sentence Verification,
B) Numeric Size Congruity and C) Photo Preference. Throughout, orange represents hard decisions, while
green represents easy decisions. Error bars are the standard error of the difference between the hard and
easy conditions. The proportion of trials data is presented as simplified marginal means, where each factor
analyzed in the Repeated Measures ANOVA (RMANOVA) is presented independently across its levels (note
(Ch.) means Chosen and (Unch.) means Unchosen) The Sentence Verification task includes an untested but
present gaze behaviour of No Dwells on Options, indicating the proportion of trials where only the sentence
received a dwell.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543799doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543799
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thus, we acknowledge their presence as a predominant gaze behaviour in Sentence Verification and proceed143

with the rest of the analysis looking only at trials having at 1 or more dwells.144

A 2 (Last Dwell Option) x 2 (Difficulty) x 4 (Dwell Count) RMANOVA of the proportion of trials within145

the Sentence Verification task revealed a significant three-way interaction between the tested factors (see146

Table 1; F (1.27,121.97) = 53.6, p < .001). This interaction was interrogated further by splitting the data147

into the much more common trials that ended with a dwell on the Chosen option (∼60%) and those that148

more rarely ended with a dwell on the Unchosen option (∼5%). For each of these groups we ran separate 2149

(Difficulty) x 4 (Dwell Count) RMANOVAs.150

When we look at the three-way interaction follow-up RMANOVA for Last Dwell on Chosen we reveal151

a significant interaction between Difficulty and Dwell Count (F (1.29,123.74) = 56.4, p < .001), as well as152

significant main effects (Difficulty: F (1.33,127.76) = 281.9, p < .001; Dwell Count: F (1,96) = 41.1, p <153

.001). We further followed up the two way interaction with four 1-factor RMANOVAs - one for each level154

of Dwell Count. Here, we see significant Difficulty effects in the proportion of trials at each level of Dwell155

Count. For last dwell on Chosen one-dwell trials, we see a higher proportion of Easy trials than Hard trials156

(p < .001, MHard−Easy = -0.104), while the reverse pattern of a higher proportion of Hard than Easy trials157

is revealed when there are two, three, and four or more dwells (all p’s < .05, and MHard−Easy range from158

0.00215 to 0.0192). In general, this suggests that for trials that show the commonly-occurring Last Dwell on159

Chosen pattern, Harder trials result in more dwells than Easy trials.160

When the Last Dwell fell on the Unchosen option (which occurred rarely, M Unchosen = 0.0434), we161

observed differences in the proportion of trials driven by both Difficulty (F (1,96) = 5.19, p = .0249) and162

the Dwell Count (F (1.17,112.37) = 61.16, p < .001), but not their interaction (F (1.22,116.65) = 1.99, p =163

0.1582). The proportion of Hard trials was slightly higher than that of Easy trials (MHard−Easy = 0.0024),164

and all pairwise comparisons between the number of dwells yielded significant results (all p’s < .05), with the165

proportion of trials following a pattern of one-dwell > two-dwells > three-dwells > four or more dwells. The166

results suggest that participants have very few trials with multiple dwells in this task and that the relatively167

rare gaze pattern where the eyes end on the Unchosen option occurs slightly more on Hard trials than Easy168

trials.169

Overall, Fig 1A highlights the general gaze patterns elicited by the Sentence Verification task: while170

sometimes there was no gaze upon the choice options, when it did happen, it was usually only once, and171

almost always on the chosen option. However, in the relatively infrequent number of trials where the gaze172

dwelled more than one time on the options, this occurred more often on hard trials.173

2.2.2 Numeric-Size Congruity Task174

We explored the proportion of trials in Numeric-Size Congruity with a 2x2x2x4 RMANOVA (Last Dwell175

Option x First Dwell Side x Difficulty x Dwell Count). Two significant three-way interactions were revealed176

(these were the highest order significant interactions): Last Dwell Option x Difficulty x Dwell Count (see177

Table 1; F (1.85,164.29) = 22.2812, p < .001) and Last Dwell Option x First Dwell Side x Dwell Count178

(F (2.26,201.05) = 18.0261, p < .001).179

To follow-up the Last Dwell Option x Difficulty x Dwell Count interaction, like the Sentence Verifica-180

tion follow-up, we looked at Difficulty x Dwell Count at each Last Dwell Option level separately. Again,181

participants were much more likely to end the trial by looking at the Chosen (∼80%) as compared to the182

Unchosen (∼20%) option. Following up the three-way interaction for the more common last dwell on Chosen183

gaze pattern, we uncovered a two-way interaction between Difficulty and Dwell Count (F (1.75,155.67) =184

10.1,p < .001). The further follow-ups at each level of Dwell Count found that the interaction was driven185

primarily by a significant Difficulty effect on one-dwell trials only. That is, there is a greater proportion186

of single, Chosen option dwells on Hard trials compared to Easy trials (p < .001, MHard−Easy(1Dwell) =187

0.0353). Overall, this result highlights the high proportion of trials where the last dwell ends on the chosen188

option, while revealing a subtle difficulty effect in single dwell trials. We believe this difficulty effect is best189

understood after also explaining the pattern of behaviour on Last Dwell on Unchosen trials.190

For the less common Last Dwell on Unchosen trials, the 2x4 follow-up RMANOVA revealed a significant191

two-way interaction (F (1.86,165.17) = 26.9, p < .001). Further follow-ups highlight that this is an effect192

driven by a significantly greater proportion of Last Dwell on Unchosen trials in Easy one and two-dwell cases193

than Hard (both p’s < .001, MHard−Easy(1Dwell) = -0.0261, MHard−Easy(2Dwells) = -0.0133). Last Dwell on194
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Unchosen is a less common gaze pattern as compared to Last Dwell on Chosen, but when present, it’s more195

likely to happen on Easy trials where there’s only one or two dwells to the choice options. So, why are we196

seeing fewer dwells on harder trials, opposite to what we saw in the other tasks? We speculate this has to197

do with a unique property of the Numeric-Size Congruity task where what makes a specific trial hard is the198

physical size of the target, which we feel is likely related to its visual discriminability. Specifically, on Hard199

trials, your eyes have landed on a physically small but numerically large number. This smaller character200

likely takes additional time to resolve. During this time, however, it is possible that you are also processing201

information from the other target location [45]. On these Hard trials, the other numeral at this peripheral202

location is numerically small and physically large. We think that it may be easier to resolve this peripheral,203

larger target, eliminating the need for a second fixation. If we take the mirror scenario, on an Easy trial204

your eyes land on a numerically large digit that is also physically large. Resolving this larger stimulus occurs205

quickly. But, the peripheral target in these cases is physically small. We speculate that on some trials there206

is too much uncertainty about the identify of the peripheral stimulus which in turn drives a second dwell to207

its location. The net result of this is that, on some Hard trials your linger at the first location and don’t208

need a second fixation while on some Easy trials you can more quickly leave the first location but feel the209

need to take a look at the second location.210

Returning back to the second three-way interaction (Last Dwell Option x First Dwell Side x Dwell Count)211

that emerged from the omnibus RMANOVA, we chose to first explore this interaction at each level of First212

Dwell Side separately. In general, whether looking at trials where the gaze first fell on the Left option213

(which occurred ∼60% of the time) or the Right option (which occurred ∼40% of the time), the results214

are relatively similar. In both cases, a significant two-way interaction emerges between Last Dwell Option215

and Dwell Count (First Dwell Left: F (1.66,147.96) = 80.3, p < .001; First Dwell Right: F (1.74,154.92) =216

149, p < .001). Further follow-ups for each case (at each level of Dwell Count) show the same pattern: the217

proportions of Last Dwell on Chosen trials is significantly greater than the Last Dwell on Unchosen trials218

(all 8 final tests have p values < .01).219

All together, Figure 1B summarizes these results with marginal means shown for simplicity. In the220

Numeric-Size Congruity task, most often there were only one or two gazes upon the choice options, and in221

both cases, the first gaze was most likely to start on the left while the last gaze was almost always on the222

chosen option. The difficulty effects in this task were more subtle. When the gaze only landed on the chosen223

option and stayed there, it was more likely that this happened on a hard trial than an easy trial. But, in224

the small proportion of trials where the last dwell was on the unchosen option, there were more one and225

two dwell gazes on easy trials than hard trials. We speculate this difficulty effect has to do with peripheral226

processing and the visual discriminability of targets of different sizes.227

2.2.3 Photo Preference Task228

We tested the proportion of trials in the Photo Preference task with a 2x2x2x4 RMANOVA (Last Dwell229

Option x First Dwell Side x Difficulty x Dwell Count) and found a significant four-way interaction between230

Last Dwell Option, First Dwell Side, Difficulty and Dwell Count (F (2.65,254.36) = 29.94, p < .001). For231

Photo Preference trials the most dominant factor was the First Dwell side with first looks to the Left (∼80%)232

being much more common than first looks to the Right (∼20%). As such, our initial follow-ups to the omnibus233

RMANOVA involved performing a 3-factor RMANOVA at each of the two levels of First Dwell Side.234

In the more commonly-occurring trials where the First Dwell started on the Left, the three-way follow-up235

test revealed a significant three-way interaction between Last Dwell Option, Difficulty and Dwell Count (see236

Table 1; F (2.57,247.20) = 30.43, p < .001). The additional follow up two factor RMANOVAs that were237

performed for each level of Last Dwell Option revealed further interaction effects between Difficulty and238

Dwell Count in both tests (Last Dwell Unchosen: F (1.98,189.71) = 4.82, p = .009; Last Dwell Chosen:239

F (2.69,258.31) = 35.89, p < .001). In the most commonly occurring First Dwell Left-Last Dwell Chosen240

case, the two-way interaction follow-ups for each level of Dwell Count revealed a difficulty effect only for241

two and four or more dwells. For First Dwell Left, Last Dwell Chosen, two-dwell trials, there was a greater242

proportion of Easy trials than Hard trials (MHard−Easy = -0.0637, p < .001), and an opposite pattern for243

four or more dwell trials (MHard−Easy = 0.0312, p < .001). In the less common First Dwell Left, Last Dwell244

Unchosen case, when further follow-ups were performed at each level of Dwell Count, we found the two-way245

interaction to be driven by significant differences in trials with one and four or more dwells. For one-dwell,246
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Last Dwell Unchosen, First Dwell Left trials, there was a significantly greater proportion of Easy trials than247

Hard trials (MHard−Easy = -0.00921, p = .00421) and the opposite pattern for four or more dwell trials248

(MHard−Easy = 0.0138, p < .001). Taken together we see that Hard trials generally shift toward having249

more dwells (three or more) than Easy trials (one or two).250

Shifting to the follow up analysis of the more infrequent trials where the First Dwell was to the Right,251

the only significant effects came from the main effects of Last Dwell Option and Dwell Count (Last Dwell252

Option: F (1,96) = 17.502, p < .001; Dwell Count: F (2.06, 197.43) = 24.566, p < .001). All the pairwise253

comparisons were significant, with a greater proportion of First Dwell Right and Last Dwell Chosen trials254

than First Dwell Right and Last Dwell Unchosen trials (MChosen−Unchosen = 0.00791, p < .001), and, when255

the First Dwell started on the Right, a pattern of greater proportions of two-dwells than one-dwell than256

three-dwells than four or more dwells (all p’s ≤ .01689).257

Figure 1C highlights the dominant gaze patterns evident during the Photo Preference task. Most often,258

participants looked at each option at least once, almost always starting on the left and ending on whichever259

option they chose. Decision difficulty inflated the number of dwells, with participants more likely to make260

more dwells if the decision was harder.261

2.3 Gaze Dynamics: Driven early by stereotyped information gathering, af-262

fected later by decision difficulty263

We used our proportion of trials analyses to guide an in depth exploration of gaze dynamics for the most264

commonly occurring gaze patterns in each task. This ensured adequate statistical power and allowed us to265

fully represent the dramatic ways gaze patterns differed across tasks. The analyses presented in the current266

section focused on the temporal aspects of gaze patterns and specifically examined how these dynamics varied267

with decision difficulty. We operationalized the gaze dynamics into timing metrics to describe the onset and268

duration of a dwell, as well as the time from the end of the dwell to the end of the trial (where the trial269

ended upon the cursor entering the chosen option). In cases where the most frequent gaze pattern involved270

more than 1 dwell, we also measured the onset and duration of the second or last dwell, as well as the time271

between dwell events. Across the three tasks, we analyzed 21 gaze dynamics metrics. We conducted paired272

t-tests comparing the Hard and Easy Difficulty conditions for each metric. To account for the potential273

impact of multiple comparisons, we adjusted the significance level to p = .05/21 = .00238. We fully report274

the results of these twenty-one gaze metrics in Table 2.275

2.3.1 Sentence Verification Task276

The most common gaze behaviour observed during the Sentence Verification task was either no dwell on277

any choice option or a single dwell on the chosen option. As mentioned earlier, we did not investigate gaze278

dynamics for the no dwell on option trials. To examine the gaze behaviour on single dwell trials, we analyzed279

three metrics: First Dwell Onset, First Dwell Duration, and End Dwell to Response (see Figure 2A). In the280

Sentence Verification task, irrespective of decision difficulty, there was no difference in the duration of the281

dwell on the chosen option. However, for both First Dwell Onset, and the time from the end of the dwell up282

to the response (End Dwell to Response), Hard decisions elicited significantly longer latencies (see Table 2).283

While we know that Response Times are longer for hard decisions (see above), these gaze dynamics284

suggest that the additional time is not simply due to an elongated timeline for all components of a Hard285

decision. Rather, in this particular task, where decision-relevant information resides outside of the choice286

options, more time is spent reading the sentence for Hard decisions before the gaze moves to the chosen287

options (approximately 700 ms). But, the chosen option itself does not require extensive viewing as the288

‘True’ and ‘False’ options maintain a consistent position throughout the task. Hence this dwell time does289

not differ between Hard and Easy trials. However, after the gaze leaves the chosen option, a harder decision290

requires more time to complete compared to an easier decision. This suggests that there is further cognitive291

processing involved in resolving the decision before the mouse cursor lands in the chosen option. We discuss292

this finding in light of our parallel mouse-tracking study (Ouellette Zuk et al., 2023) in the Discussion.293
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Table 1: Proportion of trials results from each task’s three-way interaction involving Difficulty as a factor.
Note. *p < .05; **p < .005; ***p < .0005
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Figure 2: Gaze dynamics of the most common dwell patterns across the three decision tasks. Each pattern
is depicted for hard and easy decisions, with every decision shown within a horizontal orange (hard) or green
(easy) bar. All gaze patterns are aligned to the moment choice options are presented. Arrows are used to
indicate the onsets and offsets of dwells, while the blue bar shows the dwell duration on the chosen option,
and the grey bar shows the dwell duration on the other option for patterns where there is more than one
dwell. Any significant differences between the gaze metrics of hard and easy trials are indicated with a
star (*) and an opaque bar or thicker arrow. Insignificant differences are shown as transparent bars or thin
arrows. For the Photo Preference 2 or more dwells plot, only the first and last dwell are depicted, but the
results include trials where there would be additional dwells. Detailed means and statistics are available in
Table 2.
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2.3.2 Numeric-Size Congruity Task294

For Numeric-Size Congruity we analyzed the two most prevalent gaze behaviours: a single dwell on the295

chosen option, and two dwells with the last dwell on the chosen option. Interestingly, in contrast to Sentence296

Verification, the effect of difficulty on gaze pattern timing in single dwell trials was entirely different. Figure297

2B illustrates that the only significant difference between Hard and Easy trials was found in the dwell298

duration of the single fixation, with Hard trials eliciting longer dwells than Easy trials (see Table 2). In this299

task, since the decision-relevant information is located at the choice option, the effects of decision difficulty300

are primarily expressed in the time required to visually acquire this information.301

Further insights about the decision-making process are gained when exploring the two-dwell pattern with302

the last dwell on the chosen option. In these trials, we segmented the pattern into 5 constituent metrics:303

time to first dwell, first dwell duration, time between dwells, second dwell duration and second dwell offset304

to response. Remarkably, only the duration of the second (and last) dwell showed a significant effect of305

decision difficulty (see Table 2). This indicates that in two-dwell trials, both Hard and Easy trials exhibit306

the same initial dwell gaze pattern up until the second, and chosen, choice option is viewed. Only at this307

point, does the gaze tend to dwell longer on average for Hard decisions, suggesting that additional time is308

needed to process and integrate the decision-related information obtained from both options.309

2.3.3 Photo Preference Task310

To capture the unique gaze behaviours specific to Photo Preference, we examined two distinct patterns:311

the highly stereotypic gaze pattern of two dwells with the first dwell on the left and the last dwell on the312

chosen (and right) option, as well as a broader set of patterns involving more than one dwell where the last313

dwell was on the chosen option. Similar to the Numeric-Size Congruity task, we analyzed five metrics for314

two-dwell, first-dwell-left, last-dwell-chosen trials. Once again, we found significant effects of difficulty only315

in the second (and last) dwell, with Hard trials resulting in dwells significantly longer than Easy trials (see316

Table 2). Figure 2C illustrates this pronounced difference, and we later discuss how the form of this decision317

information (colorful photos) and the type of decision required (preference) likely contribute to this finding.318

Lastly, we also examined decision difficulty in Photo Preference across all gaze patterns involving more319

than one dwell (trials with two, three or four or more dwells) where the last dwell fell on the chosen320

option. Here, we still analyzed five metrics, but with adjustments: metrics were anchored to the ‘last’ dwell321

(whether it was the second, third, fourth or more), and the measure of time between the two dwells was322

replaced with the onset time of the last dwell relative to the start of the trial. This is depicted in Figure323

2C. In these analyses, we observed significant differences between Hard and Easy trials in the duration of324

the last dwell, the onset of the last dwell, and the offset of the last dwell to the response (see Table 2).325

Hard trials consistently exhibited longer latencies in all three metrics. As these tests were performed on326

aggregated data from two, three, four, or more dwells, the onset of the last dwell aligns with the results from327

the proportion of trials, where Hard Photo Preference trials had a greater proportion of trials with more328

dwells compared to Easy trials. Once again, the duration of the last dwell provided evidence that it was not329

exclusively the ‘second’ dwell but rather the ‘last’ dwell affected by decision difficulty. Further, the impact of330

decision difficulty extended beyond the last gaze, as Hard decisions appeared to require additional time for331

resolution, consistent with the longer movement times in Ouellette Zuk et al.’s study (2023). Perhaps most332

interestingly, just like the Size-Congruity task, the timing of the first dwell was not impacted by decision333

difficulty. That is, in terms of both onset and duration, the first dwell is highly stereotyped, suggesting that334

decision competition doesn’t really begin until all decision information has been sampled.335

3 Discussion336

In this study we collected data from a remote cohort of participants performing three different binary337

choice tasks while recording gaze behaviour via webcam eye-tracking. This paper serves as a companion to338

Ouellette Zuk et al. (2023) which details how decision-dynamics play out for the same three tasks when339

measured by mouse-tracking. Both papers rely on previously published works [10, 12, 26] that identified340

trials with hard or easy decisions. Briefly the three tasks were: A Sentence Verification task where you341

determined whether a statement was true or false (difficulty was manipulated through sentence negation);342
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Table 2: Pairwise comparisons between hard and easy trials for all gaze metrics. Note. Gaze dynamics were
tested at an alpha level of .05/21 = .0023809. *p < .0023809; **p < .0001; ***p < .00001
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A Numeric-Size Congruity task where you determined which of two digits was numerically larger (difficulty343

was manipulated through the congruence of physical and numerical size); and a Photo-Preference task344

where you determined which of two photos you preferred (difficulty was manipulated by the pleasantness-345

similarity between the two photos). In general, hard choices take longer to resolve than easy choices, a346

finding we report in the companion paper and replicate here in our analysis of Response Times (see Figure347

1). However, response time is a coarse measure that cannot reveal any of the underlying decision processes.348

Similarly, though it is able to fill in the gap about the effects of decision-difficulty on decision processes349

after a movement is initiated, mouse-tracking (e.g., Ouellette Zuk et al., 2023) is blind to decision processes350

arising prior to movement onset. Thus, the primary objective of this study was to examine how decision351

difficulty manifests in gaze dynamics - a measure capable of indexing decision processes from the moment of352

stimulus onset.353

In order to investigate gaze dynamics it was first necessary to more broadly categorize gaze patterns -354

the series of looks (dwells) the eyes made on certain targets relevant to a decision. For example, it would355

be meaningless to examine the dynamics of a second-dwell for a task where this rarely occurred. We first356

examined trial characteristics including number of dwells, the side of space of the first dwell and whether the357

last dwell was toward the chosen target, calculating the proportion of trials observed for each gaze pattern358

and whether they occurred in hard or easy trials. This analysis of common patterns first revealed a task-359

general difficulty effect whereby more dwells were observed on harder trials. Second, and more importantly, it360

also highlighted distinct and unique gaze patterns observed between tasks. While the first paper in this series361

(Ouellette Zuk et al., 2023) demonstrated the consistency of decision difficulty effects between tasks, here362

the proportion of trials analysis exposed a relationship between gaze behaviour and the spatial distribution363

of decision information within a task.364

In the Sentence Verification task all of the decision information is contained in a statement at the top-365

middle of the screen with no unique information contained at the left or right choice options (the “True”366

and “False” labels at these locations remained constant). As such, the dominant gaze behaviour in this task367

contained either no looks toward the choice options or a single look toward the option that was selected.368

On the trials with one dwell on the chosen option, we found that the duration of that dwell remained the369

same for both hard and easy trials. Instead, the effects of decision difficulty emerged in the time it took370

for the dwell to start, and the time from the end of the dwell to the response. In this task we can infer371

that the gaze was focused on the sentence, and as the sentence contained all of the decision information,372

the differentiation between hard and easy trials emerged prior to any look towards the response options. In373

the case where a subsequent look to the chosen target occurs, the constant dwell duration seen regardless374

of decision difficulty suggests that this gaze might only serve the difficulty-independent process of spatially375

guiding the mouse response. However, after the gaze leaves the chosen option, difficulty effects re-emerge,376

suggesting that additional cognitive processing may be required beyond the choice-option dwell to finalize377

the decision.378

In the Numeric-Size Congruity task, unlike Sentence Verification, the information necessary to make a379

decision is contained at the choice options. However, this task has the interesting property that sometimes380

a single fixation toward a choice option is sufficient to make a decision (e.g., if your eyes dwell on the digit381

“1” or “9” you can definitively know it is the lower or higher numeric value respectively) while other times a382

single dwell is insufficient (e.g., if you eyes dwell on the digit “2” or “8” fixating the other target is necessary383

to make a definitive decision). Given this, it is logical that the dominant gaze patterns observed in this task384

are divided into trials with only a single dwell and trials with two dwells. When examining the single dwell385

on chosen trials of the Numeric-Size Congruity task, difficulty effects manifest in a manner wholly opposite386

to that of the Sentence Verification task. Specifically, when participants focus only on the chosen option,387

they spend significantly more time dwelling on it during hard trials compared to easy trials. This prolonged388

dwell on the incongruent yet correct choice option is the only metric in the Numeric-Size Congruity task389

where difficulty effects become evident. Neither the onset of the first dwell nor the offset to response show390

any changes with difficulty. This begins to fill in the picture of how eye gaze functions with respect to391

decision difficulty - at the moment when sufficient information about the decision has been acquired via eye392

gaze then, and only then, does difficulty begin to differentially affect the decision timeline.393

This hypothesis of gaze distribution being tied to information acquisition receives additional support from394

the two-dwell trials in the Numeric-Size Congruity task. Here we observe an intriguing pattern whereby the395

gaze dynamics of hard and easy trials appear identical all the way until the second dwell, where then, and396
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only then, do hard trials exhibit a significantly longer duration for the last dwell compared to easy trials.397

Following this extended second dwell, the time to the response is comparable for both difficulty conditions.398

Thus, all the effects of decision difficulty for this set of trials are reflected exclusively in the last dwell,399

where determining the correctness of a numerically large but physically small (i.e., incongruent) choice400

option requires more dwell time compared to a numerically large and physically large (i.e., congruent) choice401

option. Perhaps most importantly, the first dwell, which is predominantly directed towards the unchosen402

option, does not take longer in the hard condition. It is only when participants view both choice options,403

and therefore have acquired all the necessary decision information, that difficulty effects emerge.404

Finally in the Photo Preference task, decision information is necessarily and evenly distributed between405

both choice targets. That is, you can’t make a determination of comparative preference between two photos406

without having your eyes dwell on both of them. Accordingly, when examining the most common gaze407

patterns in the Photo Preference task, they all involve two or more dwells with the single most common408

pattern being a look to the left, unchosen target followed by a look toward the right, chosen target. Focusing409

on this specific two-dwell pattern, the results follow the structure outlined in the Numeric-Size Congruity410

task. That is, the difficulty effect emerges exclusively in the last dwell duration of these Photo Preference411

trials. Like before, a hard trial does not exhibit signs of being difficult until the second, chosen option is412

viewed.413

These results are confirmed in our broader investigation of Photo Preference trials with two or more414

dwells (e.g., trials with two, three, four or more dwells). Again, we consistently observed difficulty effects415

in the latter half of the trial, with hard trials showing a longer duration for the last dwell, as well as later416

onsets of the last dwell and longer durations between the last dwell and the response. This broader result417

shows the consistency of the difficulty effect on the duration of the last dwell, while the prolonged onset of418

the last dwell on hard trials likely results from averaging trials with a higher dwell count. Of note, the time419

from the offset of the last dwell to the response should not be conflated with the number of dwells in the420

same way. Instead, it suggests that this broader set of trials, with more dwells in harder trials, may more421

clearly capture decisions with lingering uncertainty. In other words, if harder trials take longer and more422

dwells cost more time, this set of trials may reflect the more challenging choices where difficult decisions are423

still being resolved all the way until the final choice occurs.424

Taken together, the analysis of gaze behaviour across these three binary choice tasks sheds light on the425

dynamics of decision making. It appears there are at least two processes at play - the gathering of decision426

information and the resolution of the decision. While these two aspects of the decision can likely proceed427

in parallel, our data suggest that information gathering is the predominant driver of gaze early in trials428

and proceeds largely without impact from the specific demands of decision difficulty until all the relevant429

information has been at least partially sampled. Moreover, information gathering appears to be highly430

stereotyped for a given task. This is most evident in the Photo Preference trials - when information was431

evenly distributed across two locations, the vast majority of dwells were directed first to the left, and then432

to the right. This aligns with gaze-focused decision models trained on behavioral data from similar binary433

choice preference tasks [28, 42, 5]. These models assume a left-first gaze, highlighting the persistent influence434

of ingrained eye movements used in reading left to right (at least in the English-speaking population tested).435

Additional evidence for the stereotyped nature of information gathering is seen in the first dwell dynamics436

on trials with more than one dwell (Numeric-Size Congruity and Photo Preference). Here, the time to first437

dwell and first dwell durations are not impacted by decision difficulty.438

This suggests that there is a level of dynamics involved in decision making that most models don’t439

capture. That is, most decision-models simulate a dynamic decision using a series of static parameters - for440

example the rate at which evidence for an option accumulates and the bound to which it must accumulate441

to in order for it to be chosen. However, here we show that the parameters themselves are likely changing442

throughout a decision. Specifically, we argue that the value of a given choice option necessarily fluctuates443

as the decision shifts from information gathering to decision resolution. Consider the Photo Preference444

task. Initially a target’s value is dictated by its ability to deliver new information (for a review of this445

idea, see [20]), separate from its content (e.g., pleasantness). Thus, both targets are equally valuable and446

the eyes adopt a stereotyped left-to-right pattern of information sampling. But then, target-value shifts to447

being defined by the details of the image. Now, the pleasantness of each option, and critically the relative448

pleasantness between options, dictates the resolution of the decision. This ability to shift decision parameters449

based on the current task context can explain both of our major gaze dynamic findings: initial dwells are450
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stereotypical, driven by information gathering and not affected by decision difficulty, while the last dwells are451

affected by decision difficulty since value during decision resolution is determined by the relative difference452

in task-relevant content between targets.453

Understood this way, it is clear that multiple facets of a target determine its value: if it contains task-454

relevant information, if it has been looked at, if it is an image or text, if it is small or large, if it is easily455

identified or not. Equally clear is that which facets are of value changes over time. Across our two studies456

we can measure the value transition from information gathering to decision resolution - a specific example457

of the more general pattern of explore versus exploit behaviors [8]. Since a key aspect of exploration is the458

physical location of targets, eye-tracking is particularly well suited to measure these kinds of information459

gathering behaviours. Then, as a decision shifts to resolution, which typically demands a motor response,460

mouse-tracking becomes a sensitive tool for watching the later stages of competition play out across time461

and space. Together, this highlights the complementary approaches taken across our two companion papers:462

gaze behaviour is acutely sensitive to task differences, especially early in trials and with respect to the spatial463

distribution of decision-relevant information, while mouse tracking is more sensitive to the decision difficulty464

effects that appear once all relevant information has been sampled.465

We believe a cross-paper comparison of difficulty effects between tasks offers some initial support for this466

idea. Arguably, the gaze dynamics during Sentence Verification are the least informative - many trials have467

no dwells at the site of a choice and those that do, don’t have dwell durations that differentiate between468

hard and easy trials. In complete contrast, as we report in our companion paper (Ouellette Zuk et al., 2023),469

during-movement measures of movement time and trajectory strongly differentiate between hard and easy470

trials for the same task. On the other end of the spectrum, the current analysis of gaze patterns in the Photo471

Preference task offers rich information about the contemplation of decision options, including many trials472

with multiple dwells. But, this same task in our companion paper (Ouellette Zuk et al., 2023) shows that473

during-movement measures had, relative to the other tasks, the least sensitivity to decision-difficulty. Not474

only does this show why collecting gaze and movement data is important, it also has theoretical implications.475

We previously made the distinction between gathering and resolving decision information - related processes476

that can sometimes proceed in parallel. We speculate that tasks like Photo Preference which require longer477

times spent gathering information are thereby also granted extra time to start resolving a decision prior to478

movement onset. As a result, movement related measures in these kinds of tasks show less sensitivity as479

more of the decision has been completed prior to the initiation of a response.480

Aside from their impressive combined ability to cover the full range of a decision - from stimulus onset481

to response completion - there is another, methodological link between our two companion papers: their482

use of remote data collection. Not only did it vastly increase the sample size of our studies (more than 400483

data sets initially collected across the two papers) it also made the study accessible to participants who may484

not typically participate in academic research (see supplementary material in Ouellette Zuk et al., 2023).485

Maybe most importantly, it also allowed us to test participants in more ecologically-valid environments. That486

is, we can collect data from people using their own devices from the comfort of their own homes without487

introducing an artificial, isolated, and highly-controlled laboratory setting that likely limits our ability to488

capture realistic and natural human behaviour [25, 41].489

4 Limitations and Conclusion490

Together, this paper series demonstrates the power of remote, online methods as tools for deeply under-491

standing the complete, dynamic and continuous decision process, rewinding the decision from the typically-492

collected final choice response, all the way back to the first glance. Combined, our studies reveal an incredibly493

robust set of findings, on smartphones, tablets and computers with mouse-tracking or eye-tracking across494

three unique decision tasks we can measure and decompose the effects of decision difficulty with precision.495

Of course, full remote data collection is not without its limitations, some which are particularly evident496

in the current study. Most notably, there are known spatial and temporal inaccuracies when using webcam497

eye-tracking. As an example, we did not feel we had sufficient spatial accuracy to properly analyze nuanced498

reading behaviour during the initial dwells to the statement in the Sentence Verification task. This limitation499

also led to an unforeseen and unfortunate outcome - due to the sampling rate slowdown caused by prioritizing500

the collection of webcam eye-tracking, our mouse-tracking data in the current study was not sufficiently501
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sampled to perform a confirmatory analysis of the effects reported in our companion paper (Ouellette Zuk et502

al., 2023). Finally, at present, webcam eye-tracking is generally restricted to participants using a computer503

with a webcam - it hasn’t yet been widely used with sufficient accuracy on mobile devices in decision science504

research.505

These limitations, however, are the type which seem likely to be overcome soon. Improved and more506

efficient gaze detection driven by ever-improving machine learning models, continued advancements in con-507

sumer hardware, and the use of mobile device cameras for eye-tracking research (e.g., [34]) are all on the508

imminent horizon [24]. And in that future, we envision using gaze and movement tracking will be paramount509

to understanding participant behaviour in and out of the lab. Importantly, as we advocate for moving into510

unrestricted domains - where the nature of the task and the decisions that people make are not controlled by511

an experimenter - we recognize the need for and strength of this combined metrics approach. Including both512

gaze and movement analysis allows you to understand both where the most relevant decision information is513

located via eye-tracking, and via motion-tracking, how difficult it is to adjudicate between that information514

to arrive at and perform the final movement required to enact a choice.515

5 Methods516

5.1 Participants517

100 adults provided their informed consent to participate in the experiment, and completed the study in full.518

Of the 100 participants, 36 self-identified as female, 66 as male, and one participant preferred to not disclose519

their gender. The average participant age was 25.47 years old (+/- 4.28). Participants were recruited using520

Prolific (www.prolific.co), an online crowdsourcing platform, where we followed Ouellette Zuk et al.’s (2023)521

participant restrictions on age (18 to 35 years old), and prior approval rating on the platform (95-100%).522

We paid participants for their time (6 GBP per hour, ∼$10 CAD per hour). All experimental proceedings523

were approved by the University of Alberta’s Research Ethics Board (Pro00087329) and were performed in524

accordance with relevant guidelines and regulations.525

5.2 Materials526

All participant data for the study was collected through the use of Labvanced [13], an online, browser-527

based Javascript experimentation platform. We designed our study in a 800 x 450 pixel coordinate frame in528

Labvanced (see Figure 3B), where it would automatically scale to the size of the participant’s screen. We529

used Labvanced’s built-in webcam eye-tracking (Labvanced v2 High Sampling Mode eye-tracking [13]). To530

ensure high-quality data collection, certain minimum requirements were imposed. Participants were required531

to use either a laptop (n = 75) or desktop (n = 25) computer with a mouse. The operating systems supported532

were Mac (n = 15), Windows (n = 84) or Linux (n = 1), along with the Chrome browser. Furthermore,533

participants were required to have a webcam with a minimum resolution of 1280 x 720 pixels, a landscape-534

oriented screen with a minimum resolution of 600 x 600 pixels (Mode = 864 x 1536 px), and a computer535

system capable of collecting at least 10 samples per second of the head’s position for optimal eye-tracking536

precision (M = 15.65 Hz, SD = 5.69 Hz). This system threshold was often met if participants had a graphics537

card and had freed up system resources prior to starting the study (i.e. closing any other programs running538

on their computer).539

5.3 Task & Procedure540

Broadly, the tasks and procedures followed by Ouellette Zuk et al. (2023) were repeated here but with the541

addition of webcam eye-tracking, and with only computers being included (Ouellette Zuk et al also tested542

tablets and smartphones). Like Ouellette Zuk et al. (2023), we asked participants to complete three distinct543

tasks that all required decision-making in a binary choice paradigm where choices were made with mouse544

movements. These tasks were Numeric-Size Congruity, Sentence Verification, and Photo Preference (with545

examples shown in Figure 1).546

Participants recruited through Prolific (www.prolific.co) were given access to a detailed description of the547

study. This description included an approximate duration of the study (1 hour), information regarding the548
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necessary hardware, and instructions on how to avoid any potential technical difficulties (complete Prolific549

description available in the Supplementary Materials). Upon clicking the study link that accompanied the550

study’s description, participants were directed to a full-screen Labvanced browser window and prompted551

to grant permission for their webcam device. In the event that participants did not meet the minimum552

requirements, they would immediately receive an error or warning message. Assuming no issues arose,553

participants would begin by providing their informed consent to participate, after which they would proceed554

to answer a brief survey pertaining to their demographic information and the hardware they were using.555

Before the primary experimental tasks, participants were given information to encourage successful web-556

cam eye-tracking data collection. Instructions about optimal lighting conditions, the re-calibration process,557

and the virtual chinrest feature were provided to participants. Then, participants underwent Labvanced’s558

5-minute eye-tracking calibration procedure. It was required that participants redo the calibration if the559

predicted gaze error surpassed 7% of the screen’s dimensions. After completing calibration, participants560

began the main experiment.561

Figure 3 illustrates the experimental procedure and trial progression. Three tasks were performed (coun-562

terbalanced in their presentation order), with simple task instructions preceding each task. 84 trials were563

completed per task, with task stimuli presented in a randomized order within each task. Every 5 trials, a564

brief seven-point eye-tracking recalibration procedure was performed to adaptively correct any drift errors565

in the gaze prediction algorithm over the course of the experiment. At any point during an experimental566

trial, the virtual chinrest feature would pause the trial if a participant’s excessive head movement affected567

the quality of the gaze prediction (M = 6.59 trials, SD = 7.22 trials).568

An experimental trial began with a green circular start button labeled “Touch here” at the bottom center569

of the screen. Participants had to move their mouse cursor to the button to initiate the trial. This prompted570

the appearance of a three-second countdown at the center of the screen. If the mouse cursor was removed571

from the circular button, the countdown paused until the cursor’s return. In the Numeric Size-Congruity572

and Photo Preference tasks, a task-specific question appeared at the top center of the screen during the573

countdown (see Figure 1). Once the countdown ended, two choice boxes appeared at the upper-left and574

upper-right corners of the screen, presenting trial-specific options. In the Sentence Verification task, two575

choice options appeared alongside the countdown and displayed a statement at the top center of the screen576

after the countdown completed. Participants could immediately select their choice option by moving their577

mouse cursor inside the respective choice area. Once a choice was made, the selected box was highlighted578

while the other choice option and start button disappeared. A “Next” button then appeared at the center579

of the screen for participants to click to proceed to the next trial at their own pace.580

All three tasks required binary choice decisions in Hard and Easy conditions. In the Numeric-Size581

Congruity task, participants were presented with pairs of digits and asked to determine which digit had a582

higher numeric value. The pairs of digits varied in congruence, where some pairs were congruent in both583

numeric and physical size (representing Easy trials with low decision difficulty, e.g., 2 vs. 8), while others584

were incongruent in numeric and physical size (representing Hard trials with high decision difficulty, e.g., 2 vs.585

8). In the Sentence Verification task, participants were tasked with verifying the truthfulness of statements.586

From previous work [10] it has been shown that statements that are true show large decision difficulty effects587

based on whether they are non-negated (representing Easy trials with low decision difficulty, e.g., ‘Cars have588

tires’) or negated (representing Hard trials with high decision difficulty, e.g., ‘Cars do not have wings’). In589

the Photo Preference task, participants were presented with pairs of photos that differed in valence (from the590

International Affective Picture System stimulus set [31], as in [26]). They were asked to then choose which591

photo they preferred. The pairs of photos varied in their dissimilarity of valence, with some pairs being592

dissimilar (representing Easy trials with low decision difficulty, e.g. High vs. Low pleasantness) and others593

being similar (representing Hard trials with high decision difficulty, e.g. High vs. High pleasantness). These594

tasks were designed to cover a wide range of decision domains, including objective perceptual judgments (such595

as discriminating between digits), semi-subjective conceptual judgments (such as evaluating the truth value of596

statements), and subjective preference judgments (such as expressing a preference for specific photographs).597

Additionally, the tasks intentionally differed in terms of stimulus characteristics and the cognitive processing598

requirements involved.599

The entire experimental procedure, as a Labvanced study, can be accessed via the link in Supplementary600

Materials.601
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Figure 3: A) All three tasks presented a classic reach-decision paradigm requiring participants to choose
one of two stimuli presented at the top left and right of their computer screen. For Numeric-Size Congruity
(SC) and Photo Preference tasks (PP), countdown onset was accompanied by a question specific to the
task, appearing at the top center of the display. The Sentence Verification (SV) task presented the two
choice options coincident with countdown onset and presented a statement (rather than a question) upon
countdown completion. Participants proceeded in a self-paced manner, pressing a button to begin the next
trial. B) The enlarged areas of interest (AOIs) used to define the boundaries of the Left and Right choice
options (blue transparent areas) when determining whether a dwell was made. The dimensions of the choice
AOIs (275 x 310 pixels) are presented relative to the dimensions of the frame size (800 x 450 pixels). The
Question/Statement AOI was used only for data-cleaning in the SV task. This frame was scaled to the
size of each participant’s screen. C) Overview of the experiment’s design. Each participant completed an
SV task, an SC task, and a PP task, with task order counterbalanced between participants. Eye-tracking
calibration occurred at the beginning of the session, and a re-calibration procedure was performed every 5
trials. Task-specific instructions were presented prior to each task.
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5.4 Data Processing602

The uncontrolled nature of online, remote data collection, including the use of webcam eye-tracking, pre-603

sented some data quality challenges that required thoughtful treatments. Gaze and cursor timeseries data604

were collected in a way that maximized the number of data samples processed for each participant, with605

priority given to the collection of gaze samples. All gaze and cursor data were then upsampled (linearly606

interpolated) to a common sampling rate of 60 Hz. The gaze prediction algorithm was refined (i.e., recal-607

ibrated) every 5 trials using Labvanced’s adaptive drift correction method [13], therefore gaze data quality608

varied over time. To minimize data rejection, we assessed the quality of each participant’s gaze data within609

each task independently (as opposed to rejecting an entire dataset for poor gaze data for a subset of trials).610

Using custom MATLAB scripts and our Gaze and Movement Analysis software, our initial data cleaning611

approach aimed to assess whether the gaze data showed reasonable patterns or whether it contained noisy,612

spurious gaze prediction errors (see [4] for a similar approach). Using more exaggerated but still mutually-613

exclusive boundaries (see Figure 3B - AOI Dwell Boundaries), we determined whether the gaze fell inside at614

least one of the task-critical areas during the decision period. For the Numeric-Size Congruity and Photo615

Preference tasks, we considered the gaze data of reasonable quality if the gaze fell within the left or right616

choice options for at least 100 milliseconds continuously. For the Sentence Verification task, we instead used617

at least one look (minimum 100 ms) to the sentence area as a proxy of reasonable gaze data as it was common618

for participants to not look at the choice options. In each task, if less than half of the trials showed reasonable619

gaze data (i.e., one dwell on a task-relevant AOI), we removed the full task from the participant’s dataset for620

analysis. Based on this criteria, from 100 participants, 3 subjects’ Photo Preference task data were removed,621

9 subjects’ Numeric-Size Congruity task data were removed, and 3 subjects’ Sentence Verification task data622

were removed. Of the remaining datasets, any individual trials that failed to show reasonable gaze data623

(per the same criteria) were removed leaving the Photo Preference, Numeric-Size Congruity, and Sentence624

Verification tasks with 82.79 (+/-2.96), 73.41 (+/-9.58) and 81.70 (+/-5.79) of 84 trials respectively.625

Then, to assess non-gaze-related quality of data, we employed similar rejection criteria to Ouellette Zuk626

et al. (2023). Within each task, we removed any trials where the response time was less than 100 milliseconds627

or greater than 3 standard deviations above the subject’s mean response time in that task. We also removed628

any trials where a pause occurred from the virtual chinrest feature, or any trials where the response time was629

not computable (from participant error or occasional data recording issues). Further, any incorrect trials630

were removed from the Sentence Verification and Numeric-Size Congruity tasks (where accuracy could be631

assessed objectively). Following these additional trial rejections, we again removed entire task data from any632

participant with less than 42 or their original 84 task trials, which resulted in one additional Numeric-Size633

Congruity task removal. From 100 participants, the final task datasets included in analysis were: Photo634

Preference: n = 97, 78.30 (+/- 5.18) trials, Numeric-Size Congruity: n=90, 70.87 (+/-9.16) trials, Sentence635

Verification: n=97, 72.09 (+/-8.23) trials.636

Unlike our companion paper (Ouellette Zuk et al. 2023) where cursor-tracking provided the key dependent637

measures, high-quality gaze data from webcam eye-tracking was the primary goal of the current study. While638

we did record mouse trajectory data alongside our gaze data, we did not have sufficient data quality to reliably639

metricize the mouse trajectory data in the same way as Ouellette Zuk et al. (2023). With recording priority640

given to the gaze data, and cursor movements generally being very quick, we found that there were many641

instances that the number of data samples from the cursor were insufficient. We discuss this unintended642

consequence in the Discussion, and encourage readers to engage with our companion paper (Ouellette Zuk643

et al., 2023), which provides a thorough analysis of high-quality cursor and touchscreen trajectories from an644

original sample of more than 300 other participants.645

5.5 Dependent Measures646

Our analysis strategy revolved around three sequential steps. First, to confirm and replicate that the main647

decision-difficulty effects elicited by these tasks were present in the current study, for every trial we recorded648

Response Time (ms): the time from the choice options being presented to the moment the cursor was649

detected as entering within the bounds of a choice option.650

Second, to broadly characterize and analyze the dominant gaze patterns within each task, we calculated651

Proportion of Trials (%): a value of 0 or 1 for each trial that represented if that trial shared certain652

characteristics (e.g. was it Hard or Easy). These counts were then aggregated such that proportion of trials653
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for a given characteristic was always calculated within each task per participant, where the trials fitting654

the characteristic were counted and then divided by the total number of trials included in the analysis655

(specifically, the number of Hard plus Easy trials).656

Third, we used the results from the proportion analysis to guide our examination of the gaze dynamics657

of the most frequent gaze patterns within each task. These gaze dynamics were centered on describing the658

timing of specific dwell patterns - when a dwell started, how long it lasted, and when it ended relative to659

the response. For patterns with more than one dwell, we wanted to capture this information about both660

the first and last dwell. Using the first and last (as opposed to strictly second) dwell afforded us flexibility661

in describing two-dwell patterns, but also three, four or more dwell patterns. In all three tasks, for every662

gaze pattern observed (where every gaze pattern necessitated there being at least one dwell), the following663

measures were collected:664

First Dwell Onset (ms): the time from the choice options being revealed to the start of the first dwell within665

a choice option.666

First Dwell Duration (ms): the length of time the dwell stayed at the first choice option viewed.667

End Dwell to Response (ms): the time from the end of the final dwell to the response, as determined by the668

mouse cursor’s entry into the choice option.669

When a frequent gaze pattern included more than one fixation (only the Numeric-Size Congruity and670

Photo Preference tasks), the last dwell’s duration was also collected:671

Last Dwell Duration (ms): the length of time the dwell stayed at the last choice option viewed preceding a672

response.673

To capture the time of the last dwell’s onset, we used two measures, dependent on the number of dwells in674

the gaze pattern being explored. When looking at trials with exactly two dwells, we use Transition Duration675

as a measure, but when looking at a collection of trials with two or more dwells (Photo Preference only), we676

use Last Dwell Onset:677

Transition Duration (ms): the time between the first and second (i.e. last, in these cases) dwells, measured678

from the offset of the first dwell to the onset of the second dwell.679

Last Dwell Onset (ms): the time from the choice options being revealed to the start of the last (i.e. second,680

third, fourth or more) dwell within a choice option.681

5.6 Statistical Procedure682

Each dependent measure was analyzed within each task using Jamovi (Version 2.2.5; an open-source statis-683

tical software). Response times and gaze dynamic metrics for each task were analyzed using paired t-tests of684

each participant’s Hard and Easy trial means on that given task. To correct for multiple comparisons, the685

three response time tests were performed with an alpha of .05/3 = .01667, and the twenty-one gaze dynamic686

metrics were tested with an alpha of .05/21 = .00238. The proportion of trials measures were tested using687

Repeated Measures ANOVAs, where p-values were Greenhouse-Geisser-corrected for sphericity violations.688

The Sentence Verification task was tested with a 3 factor RMANOVA, and Numeric-Size Congruity and689

Photo Preference tasks were tested with 4 factor RMANOVAs. We followed the family-wise error correction690

procedure from Cramer et al. [9], where the threshold for significance becomes increasingly more conser-691

vative with every significant test result within a family of results. We treated all 3 omnibus RMANOVAs692

as a single family to determine the significance of the omnibus results for the proportion of trials measures.693

Follow-up RMANOVAs were then performed on the highest order interaction(s), testing each level of one694

factor against the other factors (see section 2 - Results). This interaction procedure was performed as nec-695

essary until a single-factor RMANOVA was reached, where the simple main effects of one factor could be696

tested at all levels of the other factor. Significant main effects were explored with all pairwise comparisons.697

The Cramer et al. [9] procedure was again employed for these follow-up RMANOVAs, where the family-wise698

error correction was performed within-task (i.e. each task’s follow-up tests became a family). We report our699

results in Tables 1 and 2. Table 1 presents the per task trial proportion results from the breakdown of each700

three-way interaction involving the factor of difficulty, and Table 2 fully reports the gaze metrics differences701

between the Hard and Easy trials for each of our 21 gaze-dynamic measures.702
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[9] Angélique O. J. Cramer et al. “Hidden multiplicity in exploratory multiway ANOVA: Prevalence and741

remedies”. In: Psychonomic Bulletin & Review 23.2 (Apr. 1, 2016), pp. 640–647. issn: 1531-5320. doi:742

10.3758/s13423-015-0913-5. url: https://doi.org/10.3758/s13423-015-0913-5 (visited on743

05/24/2023).744

[10] Rick Dale and Nicholas D. Duran. “The Cognitive Dynamics of Negated Sentence Verification”. In: Cog-745

nitive Science 35.5 (2011). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6709.2010.01164.x,746

pp. 983–996. issn: 1551-6709. doi: 10 . 1111 / j . 1551 - 6709 . 2010 . 01164 . x. url: https : / /747

onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01164.x (visited on 05/30/2023).748

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543799doi: bioRxiv preprint 

https://doi.org/10.1177/0149206320969787
https://doi.org/10.1177/0149206320969787
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.3389/fpsyg.2021.733933
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.733933/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.733933/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.733933/full
https://doi.org/10.1145/3544548.3580866
https://dl.acm.org/doi/10.1145/3544548.3580866
https://doi.org/10.1037/0033-295X.100.3.432
https://doi.org/10.1037/0033-295X.100.3.432
https://doi.org/10.1037/0033-295X.100.3.432
https://doi.org/10.1371/journal.pone.0078993
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078993
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078993
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078993
https://doi.org/10.1146/annurev.neuro.051508.135409
https://www.annualreviews.org/doi/10.1146/annurev.neuro.051508.135409
https://www.annualreviews.org/doi/10.1146/annurev.neuro.051508.135409
https://www.annualreviews.org/doi/10.1146/annurev.neuro.051508.135409
https://doi.org/10.1098/rstb.2007.2098
https://royalsocietypublishing.org/doi/10.1098/rstb.2007.2098
https://royalsocietypublishing.org/doi/10.1098/rstb.2007.2098
https://royalsocietypublishing.org/doi/10.1098/rstb.2007.2098
https://doi.org/10.3758/s13423-015-0913-5
https://doi.org/10.3758/s13423-015-0913-5
https://doi.org/10.1111/j.1551-6709.2010.01164.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01164.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01164.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01164.x
https://doi.org/10.1101/2023.06.06.543799
http://creativecommons.org/licenses/by-nc-nd/4.0/


[11] Dror Dotan et al. “Track It to Crack It: Dissecting Processing Stages with Finger Tracking”. In: Trends749

in Cognitive Sciences 23.12 (Dec. 1, 2019), pp. 1058–1070. issn: 1364-6613. doi: 10.1016/j.tics.750

2019.10.002. url: https://www.sciencedirect.com/science/article/pii/S1364661319302372751

(visited on 05/30/2023).752

[12] Thomas J. Faulkenberry et al. “Response trajectories capture the continuous dynamics of the size753

congruity effect”. In: Acta Psychologica 163 (Jan. 1, 2016), pp. 114–123. issn: 0001-6918. doi: 10.754

1016/j.actpsy.2015.11.010. url: https://www.sciencedirect.com/science/article/pii/755

S0001691815300822 (visited on 05/30/2023).756

[13] Holger Finger et al. “LabVanced: a unified JavaScript framework for online studies”. In: International757

Conference on Computational Social Science 1.1 (2017), pp. 1–3.758

[14] Jonathan B. Freeman. “Doing Psychological Science by Hand”. In: Current Directions in Psychological759

Science 27.5 (Oct. 1, 2018). Publisher: SAGE Publications Inc, pp. 315–323. issn: 0963-7214. doi:760

10.1177/0963721417746793. url: https://doi.org/10.1177/0963721417746793 (visited on761

05/30/2023).762

[15] Jason P. Gallivan et al. “Decision-making in sensorimotor control”. In: Nature Reviews Neuroscience763

19.9 (Sept. 2018). Number: 9 Publisher: Nature Publishing Group, pp. 519–534. issn: 1471-0048. doi:764

10.1038/s41583-018-0045-9. url: https://www.nature.com/articles/s41583-018-0045-9765

(visited on 05/30/2023).766

[16] Mackenzie G. Glaholt and Eyal M. Reingold. “The time course of gaze bias in visual decision tasks”. In:767

Visual Cognition 17.8 (Nov. 1, 2009). Publisher: Routledge eprint: https://doi.org/10.1080/13506280802362962,768

pp. 1228–1243. issn: 1350-6285. doi: 10.1080/13506280802362962. url: https://doi.org/10.1080/769

13506280802362962 (visited on 05/12/2023).770

[17] Mackenzie G. Glaholt, Mei-Chun Wu, and Eyal M. Reingold. “Predicting preference from fixations”.771

In: PsychNology Journal 7 (2009). Place: Italy Publisher: PsychNology Journal, pp. 141–158. issn:772

1720-7525.773

[18] Joshua I. Gold and Michael N. Shadlen. “The Neural Basis of Decision Making”. In: Annual Review of774

Neuroscience 30.1 (2007). eprint: https://doi.org/10.1146/annurev.neuro.29.051605.113038, pp. 535–775

574. doi: 10.1146/annurev.neuro.29.051605.113038. url: https://doi.org/10.1146/annurev.776

neuro.29.051605.113038 (visited on 05/29/2023).777

[19] Jacqueline Gottlieb. “Understanding active sampling strategies: Empirical approaches and implications778

for attention and decision research”. In: Cortex. The Unconscious Guidance of Attention 102 (May 1,779

2018), pp. 150–160. issn: 0010-9452. doi: 10.1016/j.cortex.2017.08.019. url: https://www.780

sciencedirect.com/science/article/pii/S0010945217302769 (visited on 05/24/2023).781

[20] Jacqueline Gottlieb et al. “Information seeking, curiosity and attention: computational and neural782

mechanisms”. In: Trends in cognitive sciences 17.11 (Nov. 2013), pp. 585–593. issn: 1364-6613. doi:783

10.1016/j.tics.2013.09.001. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193662/784

(visited on 05/31/2023).785

[21] Eric Hehman, Ryan M. Stolier, and Jonathan B. Freeman. “Advanced mouse-tracking analytic tech-786

niques for enhancing psychological science”. In: Group Processes & Intergroup Relations 18.3 (May787

2015), pp. 384–401. issn: 1368-4302, 1461-7188. doi: 10.1177/1368430214538325. url: http://788

journals.sagepub.com/doi/10.1177/1368430214538325 (visited on 05/30/2023).789

[22] Felix Henninger et al. “lab.js: A free, open, online study builder”. In: Behavior Research Methods 54.2790

(Apr. 1, 2022), pp. 556–573. issn: 1554-3528. doi: 10.3758/s13428- 019- 01283- 5. url: https:791

//doi.org/10.3758/s13428-019-01283-5 (visited on 05/29/2023).792

[23] Brian P. Johnson et al. “Crowdsourcing in Cognitive and Systems Neuroscience”. In: The Neuroscientist793

(May 25, 2021). Publisher: SAGE Publications Inc STM, p. 10738584211017018. issn: 1073-8584. doi:794

10.1177/10738584211017018. url: https://doi.org/10.1177/10738584211017018 (visited on795

07/20/2022).796

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543799doi: bioRxiv preprint 

https://doi.org/10.1016/j.tics.2019.10.002
https://doi.org/10.1016/j.tics.2019.10.002
https://doi.org/10.1016/j.tics.2019.10.002
https://www.sciencedirect.com/science/article/pii/S1364661319302372
https://doi.org/10.1016/j.actpsy.2015.11.010
https://doi.org/10.1016/j.actpsy.2015.11.010
https://doi.org/10.1016/j.actpsy.2015.11.010
https://www.sciencedirect.com/science/article/pii/S0001691815300822
https://www.sciencedirect.com/science/article/pii/S0001691815300822
https://www.sciencedirect.com/science/article/pii/S0001691815300822
https://doi.org/10.1177/0963721417746793
https://doi.org/10.1177/0963721417746793
https://doi.org/10.1038/s41583-018-0045-9
https://www.nature.com/articles/s41583-018-0045-9
https://doi.org/10.1080/13506280802362962
https://doi.org/10.1080/13506280802362962
https://doi.org/10.1080/13506280802362962
https://doi.org/10.1080/13506280802362962
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1016/j.cortex.2017.08.019
https://www.sciencedirect.com/science/article/pii/S0010945217302769
https://www.sciencedirect.com/science/article/pii/S0010945217302769
https://www.sciencedirect.com/science/article/pii/S0010945217302769
https://doi.org/10.1016/j.tics.2013.09.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193662/
https://doi.org/10.1177/1368430214538325
http://journals.sagepub.com/doi/10.1177/1368430214538325
http://journals.sagepub.com/doi/10.1177/1368430214538325
http://journals.sagepub.com/doi/10.1177/1368430214538325
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.1177/10738584211017018
https://doi.org/10.1177/10738584211017018
https://doi.org/10.1101/2023.06.06.543799
http://creativecommons.org/licenses/by-nc-nd/4.0/


[24] Mohamed Khamis, Florian Alt, and Andreas Bulling. “The past, present, and future of gaze-enabled797

handheld mobile devices: survey and lessons learned”. In: Proceedings of the 20th International Con-798

ference on Human-Computer Interaction with Mobile Devices and Services. MobileHCI ’18: 20th In-799

ternational Conference on Human-Computer Interaction with Mobile Devices and Services. Barcelona800

Spain: ACM, Sept. 3, 2018, pp. 1–17. isbn: 978-1-4503-5898-9. doi: 10.1145/3229434.3229452. url:801

https://dl.acm.org/doi/10.1145/3229434.3229452 (visited on 05/31/2023).802

[25] Alan Kingstone, Daniel Smilek, and John D. Eastwood. “Cognitive Ethology: A new approach for803

studying human cognition”. In: British Journal of Psychology 99.3 (2008). eprint: https://bpspsychub.onlinelibrary.wiley.com/doi/pdf/10.1348/000712607X251243,804

pp. 317–340. issn: 2044-8295. doi: 10.1348/000712607X251243. url: https://onlinelibrary.805

wiley.com/doi/abs/10.1348/000712607X251243 (visited on 05/31/2023).806

[26] Gregory J. Koop and Joseph G. Johnson. “The response dynamics of preferential choice”. In: Cognitive807

Psychology 67.4 (Dec. 1, 2013), pp. 151–185. issn: 0010-0285. doi: 10.1016/j.cogpsych.2013.09.001.808

url: https://www.sciencedirect.com/science/article/pii/S0010028513000492 (visited on809

05/30/2023).810

[27] Ian Krajbich. “Accounting for attention in sequential sampling models of decision making”. In: Current811

Opinion in Psychology 29 (Oct. 2019), pp. 6–11. issn: 2352250X. doi: 10.1016/j.copsyc.2018.10.812

008. url: https://linkinghub.elsevier.com/retrieve/pii/S2352250X18301866 (visited on813

11/28/2022).814

[28] Ian Krajbich, Carrie Armel, and Antonio Rangel. “Visual fixations and the computation and com-815

parison of value in simple choice”. In: Nature Neuroscience 13.10 (Oct. 2010), pp. 1292–1298. issn:816

1097-6256, 1546-1726. doi: 10.1038/nn.2635. url: http://www.nature.com/articles/nn.2635817

(visited on 12/02/2022).818

[29] Ian Krajbich and Antonio Rangel. “Multialternative drift-diffusion model predicts the relationship819

between visual fixations and choice in value-based decisions”. In: Proceedings of the National Academy820

of Sciences of the United States of America 108.33 (Aug. 16, 2011), pp. 13852–13857. issn: 0027-821

8424. doi: 10.1073/pnas.1101328108. url: https://www.ncbi.nlm.nih.gov/pmc/articles/822

PMC3158210/ (visited on 05/10/2023).823

[30] Ian Krajbich et al. “The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions”.824

In: Frontiers in Psychology 3 (2012). issn: 1664-1078. url: https : / / www . frontiersin . org /825

articles/10.3389/fpsyg.2012.00193 (visited on 05/25/2023).826

[31] PJ Lang, Margaret M. Bradley, and Bruce N. Cuthbert. “International affective picture system (IAPS) :827

affective ratings of pictures and instruction manual”. In: Technical Report (2008). Publisher: University828

of Florida. url: https://cir.nii.ac.jp/crid/1573950399053852928 (visited on 05/31/2023).829

[32] Joshua R. de Leeuw, Rebecca A. Gilbert, and Björn Luchterhandt. “jsPsych: Enabling an Open-830

Source Collaborative Ecosystem of Behavioral Experiments”. In: Journal of Open Source Software831

8.85 (May 11, 2023), p. 5351. issn: 2475-9066. doi: 10.21105/joss.05351. url: https://joss.832

theoj.org/papers/10.21105/joss.05351 (visited on 05/29/2023).833

[33] Jeff Moher and Joo-Hyun Song. “Perceptual decision processes flexibly adapt to avoid change-of-mind834

motor costs”. In: Journal of Vision 14.8 (July 1, 2014), p. 1. issn: 1534-7362. doi: 10.1167/14.8.1.835

url: https://doi.org/10.1167/14.8.1 (visited on 05/30/2023).836

[34] Omar Namnakani et al. “Comparing Dwell time, Pursuits and Gaze Gestures for Gaze Interaction837

on Handheld Mobile Devices”. In: Proceedings of the 2023 CHI Conference on Human Factors in838

Computing Systems. CHI ’23: CHI Conference on Human Factors in Computing Systems. Hamburg839

Germany: ACM, Apr. 19, 2023, pp. 1–17. isbn: 978-1-4503-9421-5. doi: 10.1145/3544548.3580871.840

url: https://dl.acm.org/doi/10.1145/3544548.3580871 (visited on 05/18/2023).841

[35] John Palmer, Alexander C. Huk, and Michael N. Shadlen. “The effect of stimulus strength on the speed842

and accuracy of a perceptual decision”. In: Journal of Vision 5.5 (May 2, 2005), p. 1. issn: 1534-7362.843

doi: 10.1167/5.5.1. url: https://doi.org/10.1167/5.5.1 (visited on 05/29/2023).844

[36] Jonathan Peirce et al. “PsychoPy2: Experiments in behavior made easy”. In: Behavior Research Meth-845

ods 51.1 (Feb. 1, 2019), pp. 195–203. issn: 1554-3528. doi: 10.3758/s13428-018-01193-y. url:846

https://doi.org/10.3758/s13428-018-01193-y (visited on 05/29/2023).847

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543799doi: bioRxiv preprint 

https://doi.org/10.1145/3229434.3229452
https://dl.acm.org/doi/10.1145/3229434.3229452
https://doi.org/10.1348/000712607X251243
https://onlinelibrary.wiley.com/doi/abs/10.1348/000712607X251243
https://onlinelibrary.wiley.com/doi/abs/10.1348/000712607X251243
https://onlinelibrary.wiley.com/doi/abs/10.1348/000712607X251243
https://doi.org/10.1016/j.cogpsych.2013.09.001
https://www.sciencedirect.com/science/article/pii/S0010028513000492
https://doi.org/10.1016/j.copsyc.2018.10.008
https://doi.org/10.1016/j.copsyc.2018.10.008
https://doi.org/10.1016/j.copsyc.2018.10.008
https://linkinghub.elsevier.com/retrieve/pii/S2352250X18301866
https://doi.org/10.1038/nn.2635
http://www.nature.com/articles/nn.2635
https://doi.org/10.1073/pnas.1101328108
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158210/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158210/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158210/
https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00193
https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00193
https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00193
https://cir.nii.ac.jp/crid/1573950399053852928
https://doi.org/10.21105/joss.05351
https://joss.theoj.org/papers/10.21105/joss.05351
https://joss.theoj.org/papers/10.21105/joss.05351
https://joss.theoj.org/papers/10.21105/joss.05351
https://doi.org/10.1167/14.8.1
https://doi.org/10.1167/14.8.1
https://doi.org/10.1145/3544548.3580871
https://dl.acm.org/doi/10.1145/3544548.3580871
https://doi.org/10.1167/5.5.1
https://doi.org/10.1167/5.5.1
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1101/2023.06.06.543799
http://creativecommons.org/licenses/by-nc-nd/4.0/


[37] Roger Ratcliff and Jeffrey N. Rouder. “Modeling response times for two-choice decisions”. In: Psycho-848

logical Science 9 (1998). Place: United Kingdom Publisher: Blackwell Publishing, pp. 347–356. issn:849

1467-9280. doi: 10.1111/1467-9280.00067.850

[38] J. F. Schouten and J. A. M. Bekker. “Reaction time and accuracy”. In: Acta Psychologica 27 (Jan. 1,851

1967), pp. 143–153. issn: 0001-6918. doi: 10.1016/0001-6918(67)90054-6. url: https://www.852

sciencedirect.com/science/article/pii/0001691867900546 (visited on 05/29/2023).853

[39] Immo Schuetz et al. “An Explanation of Fitts’ Law-like Performance in Gaze-Based Selection Tasks854

Using a Psychophysics Approach”. In: Proceedings of the 2019 CHI Conference on Human Factors855

in Computing Systems. CHI ’19: CHI Conference on Human Factors in Computing Systems. Glasgow856

Scotland Uk: ACM, May 2, 2019, pp. 1–13. isbn: 978-1-4503-5970-2. doi: 10.1145/3290605.3300765.857

url: https://dl.acm.org/doi/10.1145/3290605.3300765 (visited on 08/23/2022).858

[40] Kilian Semmelmann and Sarah Weigelt. “Online webcam-based eye tracking in cognitive science: A859

first look”. In: Behavior Research Methods 50.2 (Apr. 2018), pp. 451–465. issn: 1554-3528. doi: 10.860

3758/s13428-017-0913-7. url: http://link.springer.com/10.3758/s13428-017-0913-7 (visited861

on 08/24/2022).862

[41] Simone G. Shamay-Tsoory and Avi Mendelsohn. “Real-Life Neuroscience: An Ecological Approach to863

Brain and Behavior Research”. In: Perspectives on Psychological Science 14.5 (Sept. 1, 2019). Publisher:864

SAGE Publications Inc, pp. 841–859. issn: 1745-6916. doi: 10.1177/1745691619856350. url: https:865

//doi.org/10.1177/1745691619856350 (visited on 05/31/2023).866

[42] Shinsuke Shimojo et al. “Gaze bias both reflects and influences preference”. In: Nature Neuroscience867

6.12 (Dec. 2003), pp. 1317–1322. issn: 1097-6256, 1546-1726. doi: 10.1038/nn1150. url: https:868

//www.nature.com/articles/nn1150 (visited on 05/24/2023).869

[43] Philip L Smith and Douglas Vickers. “The accumulator model of two-choice discrimination”. In:870

Journal of Mathematical Psychology 32.2 (June 1, 1988), pp. 135–168. issn: 0022-2496. doi: 10 .871

1016/0022-2496(88)90043-0. url: https://www.sciencedirect.com/science/article/pii/872

0022249688900430 (visited on 05/29/2023).873

[44] Stephanie M. Smith and Ian Krajbich. “Attention and choice across domains.” In: Journal of Ex-874

perimental Psychology: General 147.12 (Dec. 2018), pp. 1810–1826. issn: 1939-2222, 0096-3445. doi:875

10.1037/xge0000482. url: http://doi.apa.org/getdoi.cfm?doi=10.1037/xge0000482 (visited876

on 05/25/2023).877

[45] Emma E. M. Stewart, Matteo Valsecchi, and Alexander C. Schütz. “A review of interactions between878
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