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Abstract6

As decisions require actions to have an effect on the world, measures derived from movements such as7

using a mouse to control a cursor on a screen provide powerful and dynamic indices of decision-making. In8

this first of a set of two studies, we replicated classic reach-decision paradigms across computers, tablets,9

and smartphones, we show that portable touch-devices can sensitively capture decision-difficulty. We see10

this in pre- and during-movement temporal and motoric measures across diverse decision domains. We11

found touchscreen interactions to more sensitively reflect decision-difficulty during movement compared12

to computer interactions, and the latter to be more sensitive before movement initiation. Paired with13

additional evidence for the flexibility and unique utility of pre- and during-movement measures, this14

substantiates the use of widely available touch-devices to massively extend the reach of decision science.15

We build upon this in the second study in this series (Bertrand et al., 2023) with the use of webcam16

eye-tracking to further elucidate, earlier in time, the decision process. This subsequent work provides17

additional support for tools that enable remote collection of rich decision data in ecologically-valid envi-18

ronments.19

20
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1 Introduction22

Our lives unfold as an amalgamation of decisions made and actions taken to execute them. Ultimately, these23

enacted choices shape our lives and our societies. As a result, the study of human decision behaviour has24

inspired researchers for centuries, from interest in risk preference amongst gamblers [5], to willingness to pay25

given prior value contexts [27].26

Historically, most measures of decision-making use verbal reports (e.g., [38, 27]), observed choices (e.g.,27

[34]), or discrete measurements of behaviour such as reaction time and accuracy (see [41] for review). Reaction28

times, specifically, have been shown to reflect cognitive conflict during decision-making, with more difficult29

decisions leading to longer reaction times [32, 36, 40]. These approaches, which focus almost exclusively on30

the outcome of a decision, fail to account for the embodied nature of real-world decision-making. In the31

real-world, a decision is not made until a body physically enacts the choice. Recognizing that how we decide32

is likely as important as what we decide, researchers have started recording the dynamics of behaviour [9,33

22, 14, 15, 50]. Requiring and tracking movement to select between choices, reach-decision paradigms are a34

popular method for continuously measuring the factors that underlie and bias the decision process. These35

tasks have quantified decision behaviours across a variety of choice domains for both real 3-D reaching [8, 7,36

21, 22] and for 2-D computer-mouse tracking [20, 44, 26, 45].37

Computerized reach-decision tasks, with 2-D movements made by a computer-mouse are a particularly38

sensitive, flexible, and scalable technique for the examination of decision processes ([28, 33, 26, 17, 20, 44,39

31] and many more). Requiring participants to start with their mouse cursor centered at the bottom of the40

computer screen and necessitating the selection of one of two (most commonly) choice options located in41

the top left or right corners of the screen, classic mouse-tracking paradigms record the attraction toward42

each of the two choice options. This generates a vertical movement component relatively independent of the43

competition between options (though, movement speed has been related to different aspects of the decision44
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process [14, 15]) and a critical horizontal movement component that tracks either directly toward one of the45

two options when there is no choice-competition, or indirectly between the two options when the choice-46

competition is high [14, 15, 44]. The typical result is a continuum of direct to indirect trajectories, reflecting47

the strength of competition between choice options and thus the relative difficulty of the decision. Metrics48

quantifying relative reach directness include the maximum absolute deviation from a straight trajectory49

and movement times. Like pre-movement reaction times, these during-movement measures of movement50

time and curvature are also sensitive to decision-difficulty, with harder decisions resulting in longer duration51

movements and greater trajectory curvature (as seen in Figure 1 and [28, 26, 17, 20, 44, 31, 45]).52

Despite reach-decision trajectory-tracking being an important tool for the understanding of decision-53

making, these approaches remain relatively unused outside of research labs. Recognizing that research54

deployed online via portable devices could reach a wider and more diverse audience, there has been a recent55

movement to assess the reliability of cognitive task administration in these environments [2, 39, 37]. This has56

been fuelled by new tools allowing the development of online tasks (e.g., Labvanced [18], Gorilla [3], jsPsych57

[30]) that include easy deployment to diverse, crowd-sourced participant pools (e.g MTurk [1], Prolific [35])58

and can target a variety of devices [2].59

While cognitive tasks measuring accuracy and reaction time have been replicated on tablets [19, 42] and60

smartphones [4], it is largely unknown if and how motoric measures of decision-difficulty can be measured61

on these portable devices. To test this question, we developed a reach-decision task using Labvanced [18] to62

collect continuous cursor position data, and deployed it to over 300 crowd-sourced participants. Critically,63

each of these participants completed the task on one of three different devices (>100 participants per device)64

varying in size and user-interaction requirements: personal computers (mouse-based interactions), tablets65

(finger or stylus-based interactions) and smartphones (finger-,thumb- or stylus-based interactions).66

To provide evidence that a particular device is tracking decision-difficulty, we chose to replicate three67

unique reach-decision tasks. Each of these tasks has been shown to sensitively reflect decision-difficulty68

effects through mouse-tracking (see Figure 1A) and here we tested if those effects were replicable and then69

extensible to tablets and smartphones. The three tasks were: a Numeric-Size Congruity task [17], a Sentence70

Verification task [13] and a Photo Preference task [28]. Based on these previous publications, we were able71

to select trials in each task that reflected high decision-difficulty or low decision-difficulty choices (see Figure72

1B). This established a clear benchmark for replication: a particular device was sensitive to decision-difficulty73

if high decision-difficulty trials displayed significantly greater reaction time, movement time and trajectory74

curvature scores compared to low decision-difficulty trials [28, 13, 17].75

In the Numeric-Size Congruity task, participants were asked to select which of two digits was larger in76

value, with the paired digits being either congruent in numeric and physical size (low decision-difficulty, e.g.,77

2 vs. 8) or incongruent in numeric and physical size (high decision-difficulty, e.g., 2 vs. 8). The Sentence78

Verification task asked participants to verify the truth of statements that could be non-negated (low decision-79

difficulty, e.g., ‘Cars have tires’) or negated (high decision-difficulty, e.g., ‘Cars do not have wings’). Finally,80

the Photo Preference task asked participants to select which of two dissimilarly-valenced (low decision-81

difficulty, e.g., High vs. Low pleasantness) or similarly-valenced (high decision-difficulty, e.g., High vs.82

High pleasantness) photos they preferred. Together, we ensured these tasks spanned a range of decision83

domains from objective perceptual judgments (e.g., digit discrimination), to semi-subjective conceptual84

judgements (e.g., truth value of a statement), and finally subjective preference judgements (e.g., preference85

for a particular photograph). These tasks also intentionally differed in stimulus characteristics (e.g., numeric,86

alphabetic, image), stimuli (e.g., numerical digits, written statements, photos), and processing requirements87

(e.g., perceptual discrimination, conceptual discrimination) allowing our results to be generalizable across88

remarkably distinct decision domains. Moreover, our experimental design allowed for a thorough exploration89

of the consistency of, and relationships between, metrics of decision-difficulty at different time points in the90

decision process (e.g., before and after movement-initiation). Finally, by building on previous mouse-tracking91

studies we are able to make strong a-priori predictions to provide a definitive test for using widely available92

touch-devices as a means of vastly extending the reach of decision science.93
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Figure 1: A) From left to right, a recreation of previous mouse trajectory results from the three task we
replicate. Shown are average trajectories for the low (green) and high (orange) decision-difficulty categories
for the Numeric-Size Congruity task (adapted from [17]), the Sentence Verification task (adapted from [31]’s
replication of [13]), and the Photo Preference task (adapted from [28]). B) A representation of trial conditions
falling within the low (green shading) and high (orange shading) decision-difficulty categories for each task,
with stimuli examples.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543796doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543796
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Results94

2.1 Tablets and smartphones measure decision-difficulty as well as computer95

mouse-tracking during reach-decision tasks96

For all three tasks decision-difficulty was quantified as standardized reaction time, movement time and tra-97

jectory curvature (MAD) scores (see Methods subsection 5.3.2 - Dependent Measures). A replication of98

difficulty-driven effects was considered to have occurred should high decision-difficulty trials display signif-99

icantly greater standardized scores than low decision-difficulty trials [28, 13, 17]. Thus, for each device100

(computer, tablet, smartphone) a-priori comparisons (t-tests) were made between high and low decision-101

difficulty trials within each task. A summary of statistics, unstandardized means, and mean differences102

between standardized scores are reported in Table 1.103

For the Numeric-Size Congruity and Sentence Verification tasks, the paired samples t-tests replicated104

difficulty-driven for all three devices and for all three measures of decision-difficulty (see Table 1 and Figures105

2 and 3). The Photo Preference task similarly replicated expected difficulty-driven effects across all measures106

during computer use, as well as for movement time and trajectory curvature during tablet and smartphone107

use (see Table 1 and Figure 4). Together, these results suggest that tablets and smartphones are sensitive108

tools for capturing information-rich reach-decision data across a variety of decision domains. Given the109

consistency of results for the other two tasks we attribute the divergence between computer and touch-110

device reaction time results during Photo Preference decisions to task features. Only the Photo Preference111

task required the judgment of a picture and we believe the fidelity of the picture information is degraded112

as screen-size is reduced, driving down the sensitivity to difficulty-driven effects on smaller displays. The113

relative increase in sensitivity to decision-difficulty for Computer reaction times is consistent with the Device114

differences described in the next Results subsection.115

2.2 Mouse-tracking is more sensitive to decision-difficulty before movement116

while touch-device interactions are more sensitive during movement117

Having established that all three devices tested capture decision-difficulty, our second analyses tested how118

the measurement of decision-difficulty changed across devices. Mean standardized reaction times, movement119

times and trajectory curvature scores for each task were separately submitted to a mixed-model ANOVA120

where we focused on main effects or interactions involving the between-subjects factor of Device factor and121

explored any (simple) main effects with pairwise comparisons between levels of Device (for results from this122

analysis outside this specific scope, including those that fully support the a-priori decision-difficulty effects123

described above, see Supplementary Materials 1). These tests revealed that the sensitivity of the specific124

metrics of decision-difficulty differed between touch-device and computer interactions. Specifically, comput-125

ers showed increased sensitivity to decision-difficulty pre-movement (i.e., reaction time) while tablets and126

smartphones showed increased sensitivity during movement (i.e., movement time and trajectory curvature).127

2.2.1 Measure sensitivity pre-movement128

Within the Numeric-Size Congruity task, a 2 (Congruity) x 3 (Number Pairs) x 2 (Number Presentation129

Side) x 3 (Device) mixed-model ANOVA assessing standardized reaction times revealed both a main effect130

of Device (F (2,237) = 12.69, p = 5.81e-6, η2 = 3.16e-4) and an interaction between Number Pair and Device131

(F (4,237) = 14.23, p = 3.37e-10, η2 = .022). A significant main effect of Device was seen for both 1v2132

(F (2,237) = 17.79, p = 6.31e-8) and 8v9 Number Pairings (F (2,237) = 19.77, p = 1.15e-8). The 8v9 effect,133

which is the hardest number-pair to decide between because it has both the smallest numeric difference and134

the smallest relative difference (see Supplementary Discussion 2), is driven by Computer having the longest135

reaction times compared to the touch-devices (MeanComputer−Smartphone = 0.18, t = 5.74, p = 6.01e-7, d136

= 0.43; MeanComputer−Tablet = 0.20, t = 6.78, p = 1.30e-9, d = 0.50). Meanwhile, the 1v2 effect, which is137

much easier because of the larger relative difference and presence of small numbers, is driven by Computer138

having the shortest reaction times (MComputer−Smartphone = -0.13, t = 4.26, p = 8.77e-4, d = 0.32 and139

MComputer−Tablet = -0.16, t = 5.26, p = 7.74e-6, d = 0.39). Thus, for reaction time, Computers show140

greater differentiation between hard and easy trials.141
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Unstandardized Standardized
M SD

zHard-zEasy
Decision Difficulty Within Between

DeviceDevice EasyEasy HardHard EasyEasy HardHard EasyEasy HardHard M SE df t p Cohen’s d

Numeric-Size Congruity

Reaction Time (ms)
Computer 530.19 564.46 187.73 189.06 245.15 264.11 0.24 0.025 82 9.77 *** 1.07
Tablet 556.12 571.19 127.02 124.66 149.23 152.21 0.16 0.026 78 6.14 *** 0.69
Smartphone 503.24 526.08 121.35 135.78 169.16 184.01 0.18 0.034 77 5.15 *** 0.58

Movement Time (ms)
Computer 413.22 422.91 124.87 135.69 116.09 116.70 0.09 0.027 82 3.45 ** 0.39
Tablet 513.31 538.46 85.38 102.68 135.83 146.86 0.27 0.029 78 9.35 *** 1.05
Smartphone 469.64 498.98 89.62 109.12 120.13 119.29 0.31 0.029 77 10.55 *** 1.20

Maximum Absolute Deviation (px)
Computer 8.01 19.64 37.10 53.57 18.85 23.86 0.24 0.029 82 8.24 *** 0.90
Tablet 13.04 25.75 27.70 38.18 10.55 13.42 0.38 0.030 78 12.51 *** 1.41
Smartphone 12.90 26.92 30.72 41.87 8.93 14.10 0.37 0.027 77 13.94 *** 1.58

Sentence Verification

Reaction Time (ms)
Computer 961.78 1496.46 326.40 493.04 395.28 631.25 1.15 0.043 82 26.57 *** 2.92
Tablet 1013.20 1403.15 312.79 489.69 344.36 596.18 0.81 0.056 78 14.43 *** 1.62
Smartphone 1041.42 1448.34 340.22 508.72 414.00 802.53 0.82 0.061 77 13.33 *** 1.51

Movement Time (ms)
Computer 462.91 606.26 174.68 274.51 164.11 257.50 0.52 0.050 82 10.50 *** 1.15
Tablet 686.74 1056.88 215.76 413.78 241.59 631.90 0.79 0.055 78 14.26 *** 1.61
Smartphone 627.03 995.52 199.39 413.78 210.84 491.94 0.91 0.050 77 18.40 *** 2.08

Maximum Absolute Deviation (px)
Computer 16.09 30.09 37.90 56.15 31.13 43.45 0.25 0.048 82 5.07 *** 0.56
Tablet 16.70 35.64 27.31 36.12 27.79 42.43 0.44 0.054 78 8.13 *** 0.91
Samrtphone 7.06 28.12 32.39 41.64 32.02 41.78 0.48 0.059 77 8.13 *** 0.92

Photo Preference

Reaction Time (ms)
Computer 1024.93 1195.25 377.06 529.52 431.12 607.31 0.30 0.046 82  6.49 *** 0.71
Tablet 1012.67 1048.80 389.61 379.82 454.26 576.58 0.04 0.048 78 0.80 n.s. 0.09
Smartphone 930.96 983.36 319.14 349.04 594.18 627.82 0.08 0.046 77 1.72 n.s. 0.20

Movement Time (ms)
Computer 569.72 648.63 219.20 268.96 291.89 501.46 0.16 0.040 82 3.90 *** 0.43
Tablet 782.13 895.75 235.46 325.69 298.36 398.20 0.23 0.047 78 4.95 *** 0.56
Smartphone 722.06 796.08 231.83 308.75 258.66 373.29 0.16 0.044 77 3.28 * 0.37

Maximum Absolute Deviation (px)
Computer 15.43 22.41 34.72 47.05 33.65 38.87 0.15 0.045 82 3.43 ** 0.38
Tablet 20.90 30.89 33.85 36.08 21.71 20.35 0.32 0.057 78 5.87 *** 0.64
Smartphone 24.16 31.056 32.61 38..31 25.06 21.39 0.15 0.054 77 2.78 * 0.32

Table 1: Task-specific unstandardized and z-scored means, and a-priori comparison results. Note. *p < .05;
**p < .005; ***p < .0005
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Figure 2: Numeric-Size Congruity task results. A) From left to right, trajectory results for computer, tablet
and smartphone (phone) devices within screen size boundaries shown to scale of a representative physical
device size. Light gray lines are each participants’ average trajectory across all trials in this comparison.
Mean trajectories across participants are shown for low (green line, Congruent trials) and high (orange line,
Incongruent trials) decision-difficulty trials with the average location of maximum absolute deviation (MAD)
shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were mirrored to
end left, and all reaches were space-normalized and standardized. Errors shown in the insets are the average
of within-subjects standard error. For full trajectory visualization details, see Supplementary Note 1. B)
From top to bottom, average of participant mean z-scored reaction times (yellow), movement times (pink),
and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error bars represent the
averaged standard error of the difference between high and low difficulty means. C) Pearson’s correlations
(r) between measures of decision-difficulty for (from top to bottom) computer, tablet and smartphone use
calculated from each participant and shown as an average. Error bars represent the standard error of the
estimated marginal mean.
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A similar pattern emerged in the Sentence Verification task. A 2 (Truth Value) x 2 (Polarity) x 3142

(Device) mixed-model ANOVA revealed a three way interaction Truth x Negation x Device (F (2,237) =143

8.21, p = 3.57e-4, η2 = .005) within reaction time. Based on where we predicted decision-difficulty to differ144

(see Figure 1) our follow-up tests looked at Negation x Device for True and False statements. We found a145

significant interaction only for True statements (F (2,237) = 13.32, p = 3.30e-6, η2 = .022). Breaking this146

down, Device was significant for both True-Negated statements (F (2,238) = 8.22, p = 3.55e-4) and True-147

Non-negated statements (F (2,238) = 14.27, p = 1.40e-6), but in importantly different ways. For the more148

difficult True-Negated statements, Computer reaction times were the longest (MComputer−Tablet = 0.16, t =149

3.76, p = .003, d = 0.59; MComputer−Smartphone = 0.16, t = 3.82, p = .002, d = 0.60), but, for the easier150

True-Non-Negated statements, Computer reaction times were the shortest (MComputer−Tablet = -0.18, t =151

4.25, p = 4.19e-4, d = 0.67; MComputer−Smartphone = -0.17, t = 4.11, p = 7.53e-4, d = 0.65). These results152

confirm that computers show greater differentiation across levels of decision-difficulty.153

2.2.2 Measure sensitivity during-movement154

An opposite pattern of results can be found when analyzing standardized movement time. Using the same155

ANOVA model described above, for Numeric-Size Congruity we found an interaction between Congruity156

and Device (F (2,237) = 16.51, p = 1.93e-7, η2 = .009). Follow-ups showed Device was significant for157

both Congruent (F (2,237) = 18.15, p = 4.63e-8) and Incongruent trials (F (2,237) = 14.22, p = 1.47e-6).158

Here, Computer showed increased movement times for Congruent trials (MComputer−Smartphone = 0.11, t159

= 5.38, p = 2.61e-6, d = 0.26; MComputer−Tablet = 0.088, t = 4.34, p = 3.06e-4, d = 0.21) but decreased160

movement times for Incongruent trials (MComputer−Smartphone = -0.11, t = 5.20, p = 6.08e-6, d = 0.21;161

MComputer−Tablet = -0.087, t = 4.30, p = 3.67e-4, d = 0.21), resulting in less divergence in movement162

times between the two difficulty levels compared to touch-devices. In complete opposition to the pattern163

observed for reaction times, these results suggest Computer movement times are significantly less sensitive164

to decision-difficulty compared to Tablet and Smartphone movement times.165

Again Sentence Verification movement time results confirm this finding. Here the same task-specific166

mixed-model ANOVA described previously revealed a Negation by Device interaction (F (2,237) = 19.59, p167

= 1.34e-8, η2 = .027). Follow-ups revealed a main effect of Device both when statements were Non-negated168

(F (2,237) = 21.43, p = 2.78e-9) and Negated (F (2,237) = 16.82, p = 1.48e-7). Pairwise comparisons showed169

Computer having longer movement times compared to Tablets and Smartphones when statements were Non-170

negated (MComputer−Smartphone = 0.15, t = 5.76, p = 3.53e-7, d = 0.57; MComputer−Tablet = 0.12, t = 4.54,171

p = 1.33e-4, d = 0.44) and shorter movement times when statements were Negated (MComputer−Smartphone172

= -0.15, t = 5.96, p = 1.20e-7, d = 0.59; MComputer−Tablet = -0.11, t = 4.29, p = 3.85e-4, d = 0.42). This173

again results in less sensitivity in movement time between levels of Negation for the Computer condition174

compared to touch-devices.175

The during-movement sensitivity observed for touch-devices also extended to trajectory curvature, but176

was impacted by the biomechanical properties of using a hand to act directly on a screen. Specifically,177

both tablet and smartphone results displayed a side of space biases where rightward reaches show more178

trajectory curvature compared to leftward reaches, matching what is observed in real reaching experiments179

[21]. Within Numeric-Size Congruity, this effect is evident in the trajectory curvature results as a Number180

Pair Presentation Side x Device interaction (F (2,237) = 16.90, p = 1.38e-7, η2 = .049) where both Left181

and Right reaches showed main effects of Device (Left: F (2,237) = 17.07, p = 1.19e-7; Right: (F (2,237) =182

16.55, p = 1.86e-7), but in opposite directions. For Left reaches, Tablets and Smartphones show significantly183

less curvature than Computer trajectories (MComputer−Tablet = 0.27, t = 4.70, p = 6.47e-5, d = 0.52;184

MComputer−Smartphone = 0.30, t = 5.34, p = 3.30e-6, d = 0.59) while for Right reaches, Tablets and185

Smartphones show significantly more curvature than Computer trajectories (MComputer−Tablet = -0.26, t =186

4.66, p = 7.96e-5, d = 0.51; MComputer−Smartphone = -0.29, t = 5.20, p = 6.57e-6, d = 0.57). Appreciating187

that Sentence Verification choice stimuli were locked to a side of space, the Sentence Verification trajectory188

curvature results bolster these directional effect findings, revealing a Truth x Device interaction (F (2,237)189

= 15.16, p = 6.39e-7, η2 = .074). Here we also see main effects of Device for both Left/True (F (2,237) =190

13.96, p = 1.86e-6) and Right/False reaches (F (2,237) = 16.23, p = 22.47e-7) but in opposite directions. For191

Left/True reaches, Tablets and Smartphones show significantly less curvature than Computer trajectories192

(MComputer−Tablet = 0.25, t = 4.28, p = 4.06e-4, d = 0.59; MComputer−Smartphone = 0.30, t = 5.10, p = 1.03e-193
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Figure 3: Sentence Verification task results. A) From left to right, trajectory results for computer, tablet and
smartphone (phone) devices within screen size boundaries shown to scale of a representative physical device
size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean
trajectories across participants are shown for low (green line, True Non-negated trials) and high (orange
line, True Negated trials) decision-difficulty trials with the average location of maximum absolute deviation
(MAD) shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were
mirrored to end left, and all reaches were space-normalized and standardized. Errors shown in the insets are
the average of within-subjects standard error. For full trajectory visualization details, see Supplementary
Note 1. B) From top to bottom, average of participant mean z-scored reaction times (yellow), movement
times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error
bars represent the averaged standard error of the difference between high and low difficulty means. C)
Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom) computer, tablet
and smartphone use calculated from each participant and shown as an average. Error bars represent the
standard error of the estimated marginal mean.
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5, d = 0.70) while for Right/False reaches, Tablets and Smartphones show significantly more curvature than194

Computer trajectories (MComputer−Tablet = -0.24, t = 4.18, p = 6.12e-4, d = 0.58; MComputer−Smartphone =195

-0.30, t = 5.09, p = 1.06e-5, d = 0.70). Again, this suggests that a right hand bias is more prominent for real196

touch interactions compared to mouse cursor movements (see Supplemental Discussion 3 for confirmatory197

evidence from the analysis of Movement Time).198

Finally, the trajectory results from the Photo Preference task provide another example of how touch199

and mouse interactions differ. A 3 (Valence Pairing) x 3 (Device) mixed-model ANOVA revealed a main200

effect of Device (F (2,237) = 9.32, p = 1.27e-4, η2 = .022) with standardized trajectory values for Computer201

responses (M = -0.0263, SD = 0.267) found to be different than Tablet (M = -0.116 , SD = 0.322; t =202

3.50, p = .001, d = 0.31) and Smartphone responses (M = -0.132, SD = 0.036; t = 3.91, p = 3.64e-4, d =203

0.35), and no significant difference between the two touch-devices. This Device effect did not significantly204

interact with decision-difficulty, indicating that this is a difference in the shape of the produced trajectories205

based on input - an idea which aligns with our interpretation that reaches produced as a result of direct206

interaction are different than those mediated by a mouse (see section 3 - Discussion). Overall, the differences207

in trajectory shape and presence of a right-hand bias in the Tablet and Smartphone results in contrast to208

Computer results point to a similarity between touch-device responses and real-world reaching when making209

choice selections. Further, these results highlight the increased sensitivity of post-movement measures during210

touch-device use.211

2.3 Pre- and post-movement measures are flexible, non-redundant carriers of212

decision information213

Here, we assess the relationship between our decision-difficulty measures to demonstrate that pre- and during-214

movement measures carry unique decision information. To do so, we obtained a within-participant correlation215

coefficient (r) for each combination of measures (Correlation-Type: rMAD,MT vs. rMAD,RT vs. rMT,RT )216

within each task and device. These participant average correlation coefficients were then compared using a217

(3) Correlation Type x (3) Task x (3) Device mixed-model ANOVA. Where correlations between measures218

are positive, it would indicate that they carry redundant information. However, any inverse relationship219

would demonstrate a push and pull between measures showing that on any given trial, a best estimate of220

decision-difficulty should include both pre- and during-movement measures. The results of the ANOVA221

revealed a main effect of Task (F (2,237) = 22.06, p = 1.13e-9, η2 = .009), a very strong main effect of222

Correlation-Type (F (2,237) = 601.10, p = 1.10e-92, η2 = .45) and an interaction between Correlation-Type223

and Task (F (4,237) = 5.54, p = 6.47e-7, η2 = .004). To follow up, we examined each Task separately and224

found a strong Correlation-Type effect in all three (SC: F (2,239) = 302.94, p = 2.85e-69, η2 = .56; SV:225

F (2,239) = 242.55, p = 6.05e-53, η2 = 0.50; PP: F (2,239) = 358.29, p = 6.13e-76, η2 = .60). Mean r226

values revealed trajectory curvature and movement time (rMAD,MT ) to be moderately positively correlated227

(SC: M r = 0.30, SD = 0.24; SV: M r = 0.33, SD = 0.26; PP: M r = 0.36, SD = 0.23) which intuitively228

makes sense - traveling a longer distance (MAD) usually takes a longer time (MT). In contrast, in each task,229

reaction time was found to be weakly inversely correlated with both other measures (SC: M r = -0.092, SD230

= 0.14 and M r = -0.11, SD = 0.20 for rMAD,RT and rMT,RT correlations, respectively; SV: M r = -0.065,231

SD = 0.17 and M r = 0.006, SD = 0.20 for rMAD,RT and rMT,RT correlations, respectively; PP: M r =232

-0.065, SD = 0.15 and M r = -0.041, SD = 0.19 for rMAD,RT and rMT,RT correlations, respectively). This233

pattern meant that the Correlation-Type comparisons always showed differences between during-movement234

correlations (rMAD,MT , stronger and positive) and the pre- to during-movement correlations (rMAD,RT and235

rMT,RT , weaker and negative). By task, the results of these pairwise comparisons were, for rMAD,MT vs.236

rMAD,RT : SC: p = 3.5e-68, d = 2.00; SV: p = 1.06e-67, d = 1.86; PP: p = 8.23e-83, d = 2.19, and for237

rMAD,MT vs. rMT,RT : SC: p = 2.18e-73, d = 2.11; SV: p = 2.15e-50, d = 1.53; PP: p = 2.04e-76, d =238

2.07. The only slight difference across tasks we observed was that rMT,RT in the Sentence Verification task239

was close to zero, rather than weakly negative, and as such, there was a pairwise difference between rMT,RT240

and rMAD,RT (p = 7.70e-04, d = -0.33).241

Taken together, this analysis reveals that pre- and during-movement measures display an intricate re-242

lationship independent of their role in indexing task-specific decision-difficulty. That is, while across all243

tasks and devices, reaction time, movement time and curvature increase with decision-difficulty (see Results244

subsection 2.1) on a trial-by-trial basis these measures adapt to the demands of the task and pre- and during-245
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Figure 4: Photo Preference task results. A) From left to right, trajectory results for computer, tablet and
smartphone (phone) devices within screen size boundaries shown to scale of a representative physical device
size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean
trajectories across participants are shown for low (green line, High vs. Low pleasantness trials) and high
(orange line, High vs. High pleasantness trials) decision-difficulty trials with the average location of maximum
absolute deviation (MAD) shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward
reaches were mirrored to end left, and all reaches were space-normalized and standardized. Errors shown
in the insets are the average of within-subjects standard error. For full trajectory visualization details, see
Supplementary Note 1. B) From top to bottom, average of participant mean z-scored reaction times (yellow),
movement times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use.
Error bars represent the averaged standard error of the difference between high and low difficulty means. C)
Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom) computer, tablet
and smartphone use calculated from each participant and shown as an average. Error bars represent the
standard error of the estimated marginal mean.
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movement measures function as non-redundant carriers of decision information. Specifically, it appears that246

on trials where participants react more quickly (shorter RTs) there is a slight increase in movement time247

and curvature (see section 3 - Discussion for further interpretation). It is also notable that there were no248

significant Device differences and limited differences due to Task. This highlights the remarkable stability249

both of this interplay between measures and for reach-decisions to track decision-difficulty across a variety250

of interface types.251

3 Discussion252

We investigated whether measuring reach decision-difficulty could be extended beyond computer use to253

tablets and smartphones through the deployment of a three-task online experiment across the three devices.254

Each task replicated a prior mouse-tracking study used to observe decision processes (Numeric-Size Con-255

gruity task [17], Sentence Verification task [13, 31], Photo Preference task [28]), allowing us to make strong256

predictions about which trials in each task would have high versus low decision-difficulty (see Figure 1).257

Task-specific results replicated previous mouse-tracked outcomes, with high difficulty decisions displaying258

greater reaction times, movement times and trajectory curvature compared to low difficulty decisions. Most259

excitingly, all of these effects were replicated across all devices. Thus, this study demonstrates the robustness260

of dynamic measures of decision-making and offers validation for the use of small, portable devices to collect261

this movement information. For the Numeric-Size Congruity task [17], replication manifested as increased262

reaction time, movement time and trajectory curvature for incongruent trials compared to congruent trials263

(see Figure 2). For the Sentence Verification task [13, 31], the same metrics were increased on true-negated264

statements compared to true-non-negated statements (see Figure 3). Finally, for the Photo Preference task265

[28], movement time and trajectory curvature were increased for decisions requiring judgements between266

photos similar in pleasantness compared to decisions requiring judgements between photos dissimilar in267

pleasantness.268

However, these a-priori comparisons also suggested that not all tasks might be suitable for deployment269

on smaller devices. Results from the Photo Preference task show that tablets and smartphones have a270

reduced sensitivity to decision-difficulty effects, especially for reaction time (see Table 1). We believe that271

this is a reflection of stimuli salience as screen size is reduced. While the other two tasks presented decision272

information as text, the Photo Preference task required participants to distinguish between two detailed273

photos, which likely degraded in stimulus information as the stimulus size decreased. Therefore, our key274

message is that all devices are able to track decision-difficulty but device differences exist and are important275

to understand. Our second cluster of results then specifically interrogated device differences. The results276

were clear: computer responses were consistently different from tablet and smartphone responses. Computer277

responses showed an increased sensitivity to decision-difficulty within pre-movement measures (reaction time)278

while touch-device responses revealed greater sensitivity during movement (movement time and trajectory279

curvature). We speculate this might be due to the different user-interaction requirements of touch-devices280

that enforce different ‘reach’ biomechanics compared to computer-mouse interactions. This is supported by281

the right-hand bias effects observed when swiping a finger/thumb or sliding a stylus but not when moving282

a mouse. This right-hand bias, also evident in real reaching [7, 21], is thought to arise from preferential283

processing of stimuli presented on the right of a display you are interacting with, resulting in less trajectory284

curvature and faster movement times during rightward reaches.285

Why might smartphones and tablets show effects similar to a real reach movement? First, real-world286

movements made to enact mouse cursor changes on a screen are physically very small. While the cursor287

traverses a large on-screen distance, the hand moving the mouse travels a smaller distance in less time288

than even a finger on a smartphone (see non-standardized means in Table 1). These movements across289

less space and time produce more ballistic responses [24, 23]. As time and space during movement are at290

a premium with little of either available to express in indecision, this requires more of a decision to be291

resolved prior to movement initiation. [25, 52, 50]. The repercussions of front-loading the decision due292

to physical movement constraints align with results demonstrating that the demands of a motor task can293

directly influence cognitive processing (e.g., cognitive tuning [46, 10, 6, 33]). Here, it means that decision-294

differences arising in a computer task need to be more resolved prior to movement, leading to more sensitivity295

to difficulty being expressed by reaction time. More broadly, these results support the idea that the brain296
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is optimized to take advantage of the affordances of the world it navigates, when more time and space are297

available because a physical movement is longer, the final commitment to a particular choice can be withheld298

well into movement execution [50].299

A second explanation for the difference between pre- and during-movement sensitivity across computers300

compared to tablets and smartphones is the directness of the interaction. When moving a mouse to control a301

cursor to select a choice-option the action is physically dissociated from the target we are choosing - the hand302

is on the table rather than the screen. But, when we move our finger to touch a choice-option on a tablet or303

smartphone our action is directed toward the actual thing we are selecting. From the perspective of a brain304

controlling movement this is likely a profoundly different problem. For example, physically interacting with305

an object increases its appeal [51] and moving an object toward your own body can improve your ability to306

remember it [48]. These phenomena are likely related to the coordinate remapping required when moving a307

mouse in one plane to control a cursor in a different plane. This dramatically differs from the more direct308

planning available to the brain when mapping a touch screen target into the action space of the hand and arm309

[12, 53, 43, 49]. We would argue that it is this directness of interaction and movements that traverse longer310

distances over more time that explain why touch-devices show increased sensitivity in measures recorded311

during movement.312

This dynamic interplay between pre- and during-movement measures was the subject of our third category313

of results. Despite all three measures increasing as decision-difficulty increased, our correlational analyses314

revealed an inverse relationship between reaction time and during-movement measures (also seen in some315

previous real-reaching tasks [16]). This discrepancy between overall task-related effects and trial-by-trial316

effects on the measures is compatible with an evidence accumulation framework of decision-making. Within317

this framework, evidence is noisily accumulated over time until a decision threshold has been reached [45,318

50], signalling the onset of a movement. More difficult decisions require more evidence to be accumulated319

before support for one option reaches this threshold. This takes more time (i.e., longer reaction time), and320

unresolved competition impacts movements during choice selection (i.e., longer and less straight movements321

[47, 45, 50]), explaining the overall effects of decision-difficulty we report. However, when decision-difficulty322

is constant, there is still natural variation in reaction times. If decision processing requirements remain the323

same, but reaction time is reduced, there is more unresolved competition at movement onset. This necessarily324

shifts decision processes into the movement. As a result, on a trial-by-trial basis shorter reaction times will325

map to longer movement times and trajectories with more curvature - exactly the inverse relationship we326

report. Evidence accumulation thus accounts for both the a-priori main effects of decision-difficulty we report327

and the measure correlations we observe. Harder decisions result in increased reaction times, movement times328

and trajectory curvature because evidence accumulates more slowly in these cases. For any given decision329

where a set amount of evidence is required, however, there is a trade-off between pre-movement and during-330

movement decision resolution - abbreviating one elongates the other.331

4 Conclusion332

Across computers, tablets and smartphones, measured by reaction time, movement time and trajectory333

curvature, and capturing how these measures are dynamically related, reach-decision tasks provide a detailed334

read-out of decision-making. Given the ubiquitous use of touch-devices and websites, our validation of these335

metrics - across three diverse tasks and in a remote cohort of 240 participants - prove they are accessible336

outside the lab and impartial to the device used. The remarkable consistency of our results offers exciting337

new ways to apply these findings to research and industry, providing detailed knowledge of decision dynamics338

to domains such as corporate talent assessment and implicit bias measurement. Our results also offer the339

potential to optimize the collection of decision information, indicating that there are features of a decision340

and a device that make a certain combination the most sensitive for a particular task. Decisions and the341

movements we make to enact them literally shape our daily lives. By vastly expanding the accessibility of342

decision measures to include anyone with a touch-device we therefore hope to open new doors to the insights343

derived from this rich information.344

To build on the incredible opportunity of remote data collection used to investigate the detailed dynamics345

of decision processes, we also conducted a second companion study (Bertrand et al., 2023). In this subsequent346

study we replicate the current study but integrate webcam eye-tracking, a technique which is sensitive to pre-347
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movement decision processes. Together, this two-study series allows us a detailed description of the entirety348

of a decision - from the gaze deployed to gather information upon stimuli onset through the mouse-tracked349

movements produced to enact a final choice.350

5 Methods351

5.1 Participants352

All experimental procedures were approved by the University of Alberta Research Ethics Office. 305 naive353

Amazon Mechanical Turk (www.mturk.com) participants took part in the study using either a computer,354

tablet or smartphone for a payment of $7 USD. Participation was restricted on Mechanical Turk to Canada-355

or U.S-based participants between 18 and 35 years of age who had an approval rating above 95% on 100 or356

more study completions. Participants self-reported age, gender, handedness, visual acuity, English language357

proficiency, habitual activities requiring hand-eye coordination, chosen device specifications and typical use358

of their chosen device for participation (see Supplementary Tables 1-3 for a complete demographic and device359

use summary). Participants were excluded from analysis based on insufficient (< 50%) good trials within any360

of the experimental tasks or in any of the unique task conditions (see sub-subsection 5.3.3 - Data Cleaning).361

5.1.1 Computer362

101 participants completed the study using a personal computer. Of those, nine were excluded from analysis363

for not meeting device interaction requirements (i.e., did not use a wired or wireless mouse). A further nine364

computer users were excluded (see sub-subsection 5.3.3 - Data Cleaning), resulting in data from 83 computer365

users being analyzed (25 female, 56 male, and 2 who preferred not to say; M age = 33.75, SDage = 9.35).366

5.1.2 Tablet367

101 participants completed the study using a tablet. Four were excluded from analysis for not meeting device368

interaction requirements (i.e., did not use finger-, thumb- or stylus-based interactions). A further nineteen369

tablet users were excluded (see sub-subsection 5.3.3 - Data Cleaning), leaving data from 79 tablet users to370

be analyzed (27 female, 51 male, and 1 nonbinary; M age = 33.41, SDage = 6.25).371

5.1.3 Smartphone372

103 participants completed the study using a smartphone. Of those, twenty-five were excluded (see sub-373

subsection 5.3.3 - Data Cleaning), leaving 78 smartphone users for analysis (26 female, 52 male, and 1 who374

preferred not to say; M age = 33.73, SDage = 6.72).375

5.2 Procedure and apparatus376

The study was implemented using Labvanced [18], a graphical task builder offering built-in mouse- and377

finger-tracking, and temporal response recording compatible with computer, tablet and smartphone use for378

online study implementation. The study was distributed via Amazon Mechanical Turk, and devices used for379

study completion were uncontrolled except for requiring use of a separate mouse (wired or wireless) during380

computer use, or an Android operating system and touch-screen device interaction (via finger, thumb or381

stylus) during tablet or smartphone use (see Supplementary Tables 2-3 for selected device and interaction382

details).383

Participants completed three reach-decision tasks requiring them to choose one of two stimuli presented384

at the top left and top right corners of their device screen based on a question or statement appearing at the385

center of the testing interface (see Figure 5). The reach-decision tasks (see Figure 1) presented Numeric-Size386

Congruity (adapted from [17]), Sentence Verification (adapted from [13, 31]) and Photo Preference (adapted387

from [28]) paradigms, each consisting of 84 trials and taking approximately 15 minutes to complete.388

Each trial first presented a green circular start button labeled “Touch here” at the bottom center of the389

screen, requiring participants to navigate their mouse cursor to (Computer) or place their finger, thumb, or390

stylus on (Tablet and Smartphone) the button to start the trial. Touching the start button triggered a three391
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second countdown, centered on the display screen (Figure 5B). Removing the mouse cursor, digit or stylus392

from the start button or the surface of the screen paused the countdown until touch-contact within the start393

button had been re-established. For the Numeric-Size Congruity and Photo Preference tasks, countdown394

onset was accompanied by a task-specific question appearing centered at the top of the display (Figure 5B).395

Upon countdown completion, two choice boxes appeared at the upper-left and upper-right of the screen,396

each presenting trial-specific choice options. For the Sentence Verification task, the two choice options397

appeared coincident with countdown onset and presented a statement centered at the top of the screen398

upon countdown completion (Figure 5B). Participants were free to select either choice option immediately399

upon countdown completion. For Computers, choice selection required participants to move their mouse400

cursor inside the choice-box. For Tablets and Smartphones, participants were required to slide their finger,401

thumb, or stylus across the screen to touch their selected choice-box, keeping contact with the screen at all402

times. If touchscreen contact was lifted, that trial was removed from analysis and an error message would403

appear on the screen, reading “Your finger was lifted from the screen as you moved, and we were unable to404

track the movement. Please touch your option now and remember in the future to keep your finger on the405

screen.” When selected, a choice-box was highlighted with a blue border, the other option and start button406

disappeared, and a “Next” button appeared centered on the screen. Participants were then free to click or407

press on the “Next” button to continue to the next trial, allowing them to self-pace the experiment.408

Trials were randomized within each task and the order of task presentation was counterbalanced across409

participants. Participants were instructed to complete the study in its entirety in a single session and were410

provided with detailed instructions outlining each task before it started. Participants were encouraged to411

take short breaks between tasks but had a maximum time limit of ninety minutes to complete the study.412

Labvanced automatically scales the dimensions of the testing interface and its stimuli components to the413

screen size and resolution of the device in use, presenting a landscape (800 x 450 pixel, Labvanced coordi-414

nates) orientation for computer-based participation and a portrait (470 x 800 pixel, Labvanced coordinates)415

orientation for touch-device based participation. Stimuli-screen proportions remained consistent independent416

of device screen size (see Figure 5B for device-specific design details).417

5.2.1 Numeric-Size Congruity418

The Numeric-Size Congruity task in the current study was adapted from Faulkenberry, Cruise, Lavro and419

Shaki’s experiment [17] examining the dynamics of the size congruity effect. For each Numeric-Size Congruity420

trial, the question “Which number is larger in value?” appeared coincident with the onset of the countdown421

timer, centered at the top of the screen (Figure 5). Following countdown termination two numbers were422

displayed simultaneously, one in each of the upper-left and upper-right choice boxes, and participants could423

move to select their preferred choice. Stimuli consisted of the Arabic numerals 1, 2, 8 and 9 displayed in424

Arial font and presented in pairs of different physical size with a 2:1 font size ratio. From these, six choice-425

pairs were generated: 1v2, 2v8 and 8v9, with each pair either congruent in physical and numeric size (the426

numerically larger numeral appearing physically larger than its paired counterpart, e.g., 2v8), or incongruent427

in physical and numeric size (the numerically larger numeral appearing physically smaller than its paired428

counterpart, e.g., 2v8; see Figure 1). Within each condition, the numerically larger number was presented429

equally often on the left and the right, counterbalancing side of space effects. This created twelve conditions,430

each presented 7 times for a total of 84 trials.431

5.2.2 Sentence Verification432

Adapted from Maldonado, Dunbar and Chemla’s replication [31] of Dale and Duran’s linguistic negation433

experiment [13], each Sentence Verification trial presented a “True” and “False” response option in the434

top-left and top-right corners of the screen, respectively (Figure 5). Following countdown termination, a435

statement was displayed at the top-center of the screen, prompting participants to judge whether it was true436

or false by selecting the appropriate response option. Statement stimuli consisted of 21 simple declarative437

statements manipulated in truth value (true, false) and negation (non-negated, negated). Sentence negation438

was manipulated by adding “not” to statements (e.g., “giraffes are tall” is non-negated, while “giraffes are439

not tall” is negated). Truth value was manipulated by changing the adjective at the end of the sentence440

(e.g., “giraffes are not short” is true, while “giraffes are not tall” is false). Crossing these factors yielded four441

sentence conditions where each sentence could be a true or false statement in either negated or non-negated442
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Figure 5: A) Overview of study design. Each participant completed a Numeric-Size Congruity task (SC), a
Sentence Verification task (SV) and a Photo Preference Task (PP), with task order counterbalanced between
participants. Task-specific instructions were presented prior to each task. B) All three tasks presented a
classic reach-decision paradigm requiring participants to choose one of two stimuli presented at the top left
and top right of their device screen. For SC and PP tasks, countdown onset was accompanied by a question
specific to the task type appearing centered at the top of the display. The SV task presented the two choice
options coincident with countdown onset and presented a statement (rather than a question) upon countdown
completion. C) A comparison of interface arrangements between devices. Shown are representative examples
of a computer, tablet and smartphone (phone) testing interface. All values are reported in pixels. Specific
sizes of device screens and interface components observed by participants were dependent on the size of the
device used, but screen to interface component proportions remained constant within each device category.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543796doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543796
http://creativecommons.org/licenses/by-nc-nd/4.0/


forms (see Figure 1 and Supplementary Table 4). Participants saw all four conditions of each statement,443

with the 84 resulting statements presented in a random order across trials.444

5.2.3 Photo Preference445

Adapted from Koop and Johnson’s experiment [28] examining the mental dynamics of preferential choice,446

each Photo Preference trial presented the question “Which photo do you prefer?” centered at the top of447

the screen coincident with countdown initiation (Figure 5). Following countdown termination two images448

were then simultaneously displayed in the choice boxes to the upper left and upper right corners of the449

screen. As in Koop and Johnson [28], the International Affective Picture System (IAPS [29]) was used to450

develop a stimulus set of paired images using pleasantness ratings as an analog to photo preference, given451

equal levels of arousal [28]. We therefore selected 168 pictures from the IAPS, categorized as being high in452

pleasantness (pleasantness rating between 7 and 8), average in pleasantness (referred to as Med; pleasantness453

rating between 4.50 and 5.50) or low in pleasantness (pleasantness rating between 2 and 3). Images scoring454

greater than 6.15 in arousal were excluded. Selected pictures were then matched for arousal (difference455

< 0.30) and paired to create all pairwise combinations of High, Medium and Low. Pairs not matched456

in pleasantness (e.g., High−Med, High−Low, Med−Low) were counterbalanced for side of presentation,457

while pairs matched in pleasantness (e.g., High−High, Med−Med, Low−Low) appeared equally as often as458

the unmatched conditions when ignoring side of space (see Figure 1). This allowed for 14 presentations459

of each pleasantness pairing (7 of each unmatched pairing for each presentation side and 14 for matched460

pairings), for a total of 84 trials. Photo choice selections revealed a global preference for photos rated as461

more pleasant (MMorePleasantSelected = 78.3%), substantiating claims that preference is roughly analogous462

with pleasantness ratings [28]. As a result, the analysis included only trials containing a High pleasantness463

photo and in which the High photo was selected. Due to experimental error, half of participants completed464

a version of this task that did not counterbalance for side of presentation (i.e., High photos were always465

presented on the left). A separate ANOVA showed no significant difference between these groups for any466

measure, so both groups were included in the reported analysis where we collapsed across photo presentation467

side.468

5.3 Data Treatment469

5.3.1 Operationalization of trajectory data470

Raw movement data was resampled to 60 Hz, then filtered using a 10 Hz lowpass filter. Reach onset was471

defined as the first time the mouse cursor (Computer) or finger/thumb/stylus (Tablet and Smartphone)472

ascended to 5% of its peak velocity within the start button and after countdown had terminated. Should473

this velocity threshold not be achieved prior to leaving the start button, this threshold was iteratively reduced474

by 5% until a reach onset could be defined. Reach offset was similarly defined as the first time the mouse475

cursor (Computer) or finger/thumb/stylus (Tablet and Smartphone) velocity descended below a velocity476

threshold of 5% peak velocity while within one of the two choice option boxes, with this threshold iteratively477

increasing by 5% if necessary.478

5.3.2 Dependent Measures479

For each trial, the following behavioural measures were obtained:480

Reaction time (seconds): time from countdown termination to reach onset.481

Movement time (seconds): time from reach onset to reach offset (choice selection).482

Trajectory curvature (MAD): Within each trial, the perpendicular distance of the observed trajectory rela-483

tive to a straight line connecting the trajectory start and end positions was calculated for each data point.484

Maximum absolute deviation (MAD) reports the maximum of these perpendicular distances. Straight tra-485

jectories produce values approaching zero while those curving toward the center of the screen were assigned486

positive MAD values and those moving away from the center were assigned negative MAD values.487

Within-participant and within-task z-scores were computed for each dependent measure (reaction time,488

movement time, trajectory curvature). This standardization of within-participant measures allows for489
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between-task and between-participant comparisons while controlling for participant variability and indi-490

vidual reach patterns. All analyses were conducted on these standardized values. See Table 1 for reporting491

of raw and standardized measure values.492

5.3.3 Data cleaning493

Data cleaning processes were identical independent of device and were conducted using customized MATLAB494

scripts. Errors on each trial could be a combination of reaches with recording errors, reaches with insufficient495

data points (fewer than seven unique positions), reaches with reaction times greater than 0.1s, reaches with496

movement times > 3 SD above a participants mean movement time, and reaches with reaction times > 3497

SD above a participants mean reaction time. For Numeric-Size Congruity and Sentence Verification tasks,498

incorrect trials were also removed from analysis. As these tasks previously demonstrated very high levels499

of accuracy [13, 17], incorrect responses were considered to arise from participant error, with sustained500

performance errors indicating participant unreliability. The average percentage of total participant trials501

falling within each of these error categories are reported in Supplementary Table 5. A participant was502

excluded from analysis if, after data cleaning, they failed to have at least four trials in each condition of503

analysis as reported per task. In total, participants whose data was included for analysis had a mean of504

95.6% usable trials for analysis (Range: 83.7%−98.4%).505

5.4 Analysis506

The main objective of this analysis was to determine whether task-specific decision-difficulty effects (as507

expected by previous studies, e.g., [17, 28, 13, 31]) were replicated and whether these effects were consistent508

despite differences in testing device. To that end, analysis proceeded in three primary stages: 1) a-priori509

comparisons to determine replication of antecedent results, 2) within-task, between-device omnibus analysis510

of variances (ANOVAs) to determine any effects or interactions arising due to device differences, and 3)511

between-device ANOVA to determine whether there are correlational relationships between measures of512

decision-difficulty and if these remain consistent across device.513

5.4.1 A-Priori Comparison Procedure514

To determine replication of the previous task-specific difficulty effects, a subset of trial conditions were515

selected to represent low and high difficulty decisions within each task (see Figure 1). For the Numeric-Size516

Congruity task, decision-difficulty followed size-congruity, with trials incongruent in numerical and physical517

size categorized as high in decision-difficulty, while congruent trials were categorized as low in decision-518

difficulty [17]. For the Sentence Verification task, decision-difficulty varied according to negation, with true519

statements the greatest negation-driven effects [13]. The current study therefore categorized true negated520

trials as representative of a high difficulty decision, and true non-negated trials as having low decision-521

difficulty. Finally, decision-difficulty in the Photo Preference task was driven by the similarity in pleasantness522

between photos [28]. The current study places trials comparing two photos high in pleasantness in the high523

decision-difficulty category, and trials comparing a photo high in pleasantness and one low in pleasantness524

in the low decision-difficulty category.525

Within each task, mean standardized reaction time, movement time and trajectory curvature scores for526

low and high decision-difficulty trials were compared using a paired t-test. As these were a-priori tests based527

on replicating known effects, significance was set to p≤.05 with no correction for multiple comparisons.528

5.4.2 Within-task ANOVA Procedure529

Mean standardized reaction time, movement time and maximum absolute deviation measures were separately530

submitted to mixed-model ANOVAs, with within-subject factors determined by individual tasks design and531

between-subject factors of device (computer, tablet, smartphone, see section 2 - Results). All multi-way532

mixed- and RM-ANOVAs were family-wise error corrected using a sequential Bonferroni procedure [11],533

and all repeated-measures main effects and interactions were Greenhouse-Geiser corrected to protect against534

violations of sphericity. The primary objective of this series of tests was to look for device differences. As a535

result, here we focus only on main effects or interactions involving Device. Full results outside this explicit536
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objective can be found in Supplementary Materials 1, including results that support the a-priori tests of537

decision-difficulty. Interactions involving Device first collapsed over factors that did not interact, then were538

followed up by separating by the factor(s) other than Device. Significant (simple) main effects of Device539

were explored with all possible pairwise comparisons which were Bonferroni corrected with significance set540

at a corrected p≤.01.541

5.4.3 Between-task ANOVA Procedure542

To explore the relationship between measures of decision-difficulty, a Pearson’s correlation coefficient (r) was543

calculated between each pair of measures (rMAD,MT , rMAD,RT and rMT,RT ) indicating the direction and544

strength of the relationship across trials for each participant within each condition, task, and device. Mean545

correlation coefficients were then submitted to a mixed-model ANOVA with Correlation-type and Task as546

within-subjects factors and Device as a between-subjects factor. Corrections and follow-up procedures were547

then conducted as described above, except here we were most interested in the pairwise comparisons between548

Task.549
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